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Abstract
Learning interpretable and transferable subpolicies and performing task decomposition 
from a single, complex task is difficult. Such decomposition can lead to immense sample 
efficiency gains in lifelong learning. Some traditional hierarchical reinforcement learning 
techniques enforce this decomposition in a top-down manner, while meta-learning tech-
niques require a task distribution at hand to learn such decompositions. This article pre-
sents a framework for using diverse suboptimal world models to decompose complex task 
solutions into simpler modular subpolicies. Given these world models, this framework per-
forms decomposition of a single source task in a bottom up manner, concurrently learning 
the required modular subpolicies as well as a controller to coordinate them. We perform a 
series of experiments on high dimensional continuous action control tasks to demonstrate 
the effectiveness of this approach at both complex single-task learning and lifelong learn-
ing. Finally, we perform ablation studies to understand the importance and robustness of 
different elements in the framework and limitations to this approach.

Keywords Reinforcement learning · Task decomposition · Transfer · Lifelong learning · 
Hierarchical learning

1 Introduction

Lifelong learning [67] is the ability of a system to continuously learn from data, building 
on what has been previously learned. In the context of reinforcement learning, we want a 
lifelong learning agent to continue solving a series of related tasks drawn from a task dis-
tribution rather than a single, isolated task. Agents should be able to transfer knowledge 
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gained in previous tasks to improve performance on future tasks. This setting is differ-
ent from multi-task reinforcement learning  [63, 65, 72] and various meta-reinforcement 
learning settings [3, 18, 19, 21, 27, 73], where the agent is jointly trained on multiple task 
environments. Not only do such non-incremental settings make the problem of discovering 
common structures between tasks easier, they also allow the methods to ignore the problem 
of catastrophic forgetting [46], which is the inability to solve previous tasks after learning 
to solve new tasks in a sequential learning setting. We refer the reader to Parisi et al. [50] 
for an extensive review.

Our work takes a step towards solutions for such incremental, sequential settings [66]. 
We draw on the idea of modularity [48], i.e. complex behavior is often built from the com-
position of simpler building blocks. While learning to perform a complex task, we force the 
agent to perform task decomposition: breaking its solution down into simpler subpolicies 
instead of learning a single monolithic policy. This task decomposition allows our agent to 
rapidly learn another related task by transferring subpolicies learned from previous tasks. 
We hypothesize that many complex tasks are heavily structured and hierarchical in nature. 
The likelihood and quality of transfer of an agent’s solution increases if it can capture such 
shared structure.

Recent works have visited the problem of task decomposition from a variety of view-
points. For example, to reduce the sample complexity of task decomposition, the ideas of 
state abstraction [1, 2, 4, 5, 12, 28, 36, 41] and state aggregation [9, 47, 51] are introduced 
to compress the original state representation into one that eases learning of decomposition. 
Moreover, Isele and Cosgun [33] introduced selective memory storage and distribution 
matching to prevent catastrophic forgetting. Finally, Isele et al. [34] leverages the availabil-
ity of high-level task descriptors to achieve zero-shot lifelong learning transfer.

A key ingredient of our proposal is the idea of world models  [29, 37, 40]—transition 
models that can predict future sensory data given the agent’s current actions and observa-
tions. Often these can be learned in a semi-supervised [29] or supervised [49] manner. The 
world however is complex, and learning models that are consistent enough to plan with is 
not only hard  [62], but planning with such one-step models is also suboptimal  [32]. We 
posit that the requirement that these world models be good predictors of the world state 
is unnecessary, provided we have a multiplicity of such models. We use the term model 
primitives to refer to these suboptimal world models. Since each model primitive is only 
relatively better at predicting the next states within a certain region of the environment 
space, we call this area the model primitive’s region of specialization.

Model primitives allow the agent to decompose the task being performed into subtasks 
according to their regions of specialization and learn a specialized subpolicy for each of 
these regions or subtasks. The same model primitives are used to learn a gating controller 
to improve, adapt and compose the various subpolicies to solve a given task in a manner 
similar to a mixture of experts framework [45].

Our framework assumes that at least a subset of model primitives are useful across a 
range of tasks and environments. This assumption is less restrictive than that of succes-
sor representations [8, 14, 24, 39, 43, 44, 74, 76]. Even though successor representations 
decouple the state transitions from the rewards (representing the tasks or goals), the transi-
tions learned are policy dependent and can only transfer across tasks that share the same 
environment dynamics.

There are alternative approaches to learning hierarchical spatio-temporal decomposi-
tions from the rewards seen while interacting with the environment, with Options [61] being 
the most widely applied framework to formalize the notion of a subpolicy in a sequential 
decision making process. Such approaches include the option-critic architecture  [6] and 
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follow-on works [16, 31, 35, 42, 69, 75] that allow learning such decompositions in a sin-
gle task environment. However, this method requires regularization hyperparameters that 
are tricky to set. As observed by Vezhnevets et al. [71], its learning often collapses to a sin-
gle subpolicy. Other strategies require hand-designed features [20] or priors that promote 
diversity [13, 17] for hierarchical learning.

Moreover, we posit that capturing the shared structure across task-environments can be 
more useful in the context of transfer for lifelong learning than reward-based task specific 
structures. First, using sub-options for task decomposition requires gradient signals from 
rewards, which could be less stable due to sparsity. If sub-options are frozen during task 
decomposition, then they must be near-optimal, which model primitives need not be. If 
sub-options are not frozen and open for learning, then at the beginning of training, the 
higher-level controller is not accurately performing task decomposition, resulting in the 
wrong gradients being back-propagated into the sub-options, causing the sub-options them-
selves to change and no longer being near-optimal in their own specific tasks. In short, 
sub-option hierarchical learning is subject to the nonstationary bidirectional interplay 
between sub-options and task decomposition. During learning, either one can affect the 
other. In comparison, the task composition based on model primitives is achieved through 
supervised learning and independent of subpolicy performance. The interplay is unidi-
rectional—the gating controller is affected by model primitives, but the model primitives 
remain unchanged throughout lifelong learning. Second, model primitives are sub-optimal 
and need not be accurate as we will demonstrate later in this work. In comparison, the pro-
vided sub-options need to be near-optimal for effective task decomposition. Third, model 
primitives are not specific to behaviors, but specific to environments, while sub-options 
are behavior-specific. Future work can build on our work to explore how model primi-
tives can be utilized to decompose different behaviors and subtasks within the same local 
environments.

Other approaches include meta-learning algorithms such as Meta-Adaptation [3], Meta-
Critic [59] and Meta-Learning Shared Hierarchies (MLSH) [21], which require a multiplic-
ity of pretrained subpolicies or joint training on related tasks, which limits their ability to 
perform well in the sequential lifelong learning setting. While not in the field of reinforce-
ment learning, Shamwell et al. [57] leveraged deep neural networks to learn a multiplicity 
of world models simultaneously.

To summarize our contributions:

• Given diverse suboptimal world models that can be practically learned, we propose an 
effective method to uncover a task decomposition encoded in these models.

• We propose an architecture to jointly train all decomposed subpolicies and a gat-
ing controller to solve a given source task and achieve significant sample efficiency 
improvements in solving target tasks in lifelong learning.

• We demonstrate the effectiveness of this approach at both single-task and lifelong learn-
ing in complex domains with high-dimensional observations and continuous actions.

2  Preliminaries

We assume the standard reinforcement learning (RL) formulation: an agent interacts 
with an environment to maximize the expected reward  [60]. The environment is mod-
eled as a Markov decision process (MDP), which is defined by ⟨S,A,R, T, �⟩ with a 
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state space S , an action space A , a reward function R ∶ S ×A → ℝ , a dynamics 
model T ∶ S ×A → �(S) , and a discount factor � ∈ [0, 1] . Here, �(⋅) defines a prob-
ability distribution over a set. The agent acts according to stationary stochastic policies 
� ∶ S → �(A) , which specify action choice probabilities for each state. Each policy 
� has a corresponding Q� ∶ S ×A → ℝ function that defines the expected discounted 
cumulative reward for taking an action a from state s and following the policy � from 
that point onward.

2.1  Lifelong reinforcement learning

In a lifelong learning setting, the agent must sequentially interact with multiple tasks and 
successfully solve each of them. Let N denote the total number of tasks to learn. Adopt-
ing the framework from   Brunskill and Li [11], in lifelong RL, the agent receives S,A , 
initial state distribution �0 ∈ �(S) , horizon H, discount factor � , and an unknown distribu-
tion over reward-transition function pairs, D. The agent samples (Ri, Ti) ∼ D and interacts 
with the MDP ⟨S,A,Ri, Ti, �⟩ for a maximum of H timesteps, starting according to the 
initial state distribution �0 , where i ∈ {1,… ,N} . After solving the given MDP or after H 
timesteps, whichever occurs first, the agent resamples from D and repeats.

2.2  Decomposed representation

The fundamental question in lifelong learning is to determine what knowledge should be 
captured by the agent from the tasks it has already solved so that it can improve its per-
formance on future tasks. When learning with functional approximation, this translates to 
learning the right representation—the one with the right inductive bias for the tasks in the 
distribution. Given the assumption that the set of related tasks for lifelong learning share a 
lot of structure, the ideal representation should be able to capture this shared structure.

Thrun and Pratt [68] summarized various representation decomposition methods into 
two major categories. Modern approaches to avoiding catastrophic forgetting during trans-
fer tend to fall into either category. The first category partitions the parameter space into 
task-specific parameters and general parameters  [54]. The second category learns con-
straints that can be superimposed when learning a new function [38].

A popular approach within the first category is to use what Thrun and Pratt [68] term 
as recursive functional decomposition. This approach assumes that the task solution can 
be decomposed into a function of the form fi = hi◦g , where hi is task-specific whereas g is 
the same for all fi and i ∈ {1,… ,N} . This scheme has been particularly effective in com-
puter vision where early convolutional layers in deep convolutional networks trained on 
ImageNet [15, 58] become a very effective g for a variety of tasks. However, this approach 
to decomposition often fails in DeepRL because of two main reasons. First, the gradients 
used to train such networks are noisier as a result of Monte Carlo sampling. Second, the 
i.i.d. assumption for training data often fails.

We instead focus on devising an effective piecewise functional decomposition of the 
parameter space, as defined by Thrun and Pratt [68]. The assumption behind this decom-
position is that each function fi can be represented by a collection of functions h1,… , hK , 
where K ≪ N , and N is the number of tasks to learn. Our hypothesis is that this type of 
decomposition is much more effective and easier to learn in RL.
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3  Model primitive hierarchical reinforcement learning

This section outlines the Model Primitive Hierarchical Reinforcement Learning (MPHRL) 
framework (Fig. 1) to address the problem of effective piecewise functional decomposition 
for transfer across a distribution of tasks.

3.1  Model primitives and gating

The key assumption in MPHRL is access to several diverse world models of the envi-
ronment dynamics. These models can be seen as instances of learned approximations to 
the true environment dynamics T  . In reality, these dynamics can even be non-stationary. 
Therefore, the task of learning a complete model of the environment dynamics might be 
too difficult. Instead, it can be much easier to train multiple approximate models that spe-
cialize in different parts of the environment. We use the term model primitives to refer to 
these approximate world models.

The number of model primitives K depends mainly on the specific environment and 
domain. As demonstrated in Sect. 4.3.3, this quantity K need not be exact for MPHRL to 
achieve significant sample efficiency improvement in lifelong learning, but a larger number 
of diverse model primitives (over-specification of regions of specialization) is more favora-
ble than a smaller number of diverse model primitives (under-specification of regions of 
specialization).

Suppose we have access to K model primitives: T̂k ∶ S ×A → 𝛱(S) , where 
k ∈ {1,… ,K} . For simplicity, we can assign a label Mk to each T̂k , such that their predic-
tions of the environment’s transition probabilities can be denoted by T̂(st+1 ∣ st, at,Mk).

3.1.1  Subpolicies

The goal of the MPHRL framework is to use these suboptimal predictions from different 
model primitives to decompose the task space into their individual regions of specializa-
tion, and learn different subpolicies �k ∶ S → �(A) that can focus on these regions. In 
the function approximation regime, each subpolicy �k belongs to a fixed class of smoothly 
parameterized stochastic policies {��k ∣ �k ∈ �} , where � is a set of valid parameter 
vectors.

πKπ3π2πk

TKT3T2T̂k

×

Gating controller

EnvironmentP (Mk | st)

at

st, rt

Fig. 1  Diagram of MPHRL Architecture. Solid arrows are active during both learning and execution. Dot-
ted arrows are active only during learning. Here, k ∈ {1,… ,K} , where K is the number of model primitives 
the lifelong learning agent has access to



 Autonomous Agents and Multi-Agent Systems           (2020) 34:28 

1 3

   28  Page 6 of 38

Model primitives are suboptimal and make incorrect predictions about the next state. 
Therefore we do not use them for planning or model-based learning of subpolicies directly. 
In other words, the subpolicies do not receive any information about the dynamics from the 
model primitives. The model primitives only help task decomposition, but do not provide any 
information to each subpolicy as to how to solve the subtask. Instead, model primitives give 
rise to useful functional decompositions and allow subpolicies to be learned in a model-free 
way. This also means that the sample efficiency improvement achieved by MPHRL does actu-
ally stem from the use of model primitives, and not from the fact that the model primitives 
encode domain knowledge about the optimal sub-behaviors. Model primitives are sub-opti-
mal, which makes the domain knowledge themselves inadequate for robust subpolicy learning.

3.1.2  Gating controller

Taking inspiration from the mixture-of-experts literature [45], where the output from multi-
ple experts can be combined using probabilistic gating functions, MPHRL decomposes the 
solution for a given task into multiple “expert” subpolicies and a gating controller that can 
compose them to solve the task. We want this switching behavior to be probabilistic and con-
tinuous, as opposed to one-hot hard selections, to avoid abrupt transitions. During learning, 
we want this controller to help assign the reward signal to the correct blend of subpolicies to 
ensure effective learning as well as decomposition.

Model primitives can give the gating controller access to the optimal mixture of subpoli-
cies to activate and use, but do not tell the subpolicies how to solve each subtask, since the 
subpolicies are learned via model-free RL.

To begin, we observe that the diverse model primitives divide the world states into multiple 
regions of specialization that have different transition dynamics. Local environments with dif-
ferent transition dynamics can require different sets of desirable behaviors to navigate effec-
tively. It is natural to reason that a separate subpolicy should be learned for each region of 
specialization, so that these subpolicies will be less identical, therefore making hierarchical 
lifelong RL more sample-efficient. This means that an effective task decomposition should 
divide the world states precisely into these regions of specialization and learn a subpolicy for 
each region. Therefore, our goal is to accurately categorize each world state st into the correct 
region of the specialization.

We achieve this goal by computing P(Mk ∣ st, at, st+1) . This quantity denotes the ground 
truth probability of the kth model primitive being the most accurate predictor of the current 
transition (st, at, st+1) . This quantity also denotes the probability of st belonging to the kth 
region of specialization. Here, to say that a model primitive specializes in the current state 
is to say that out of all model primitives, this model primitive makes the most accurate pre-
diction of the current transition (st, at, st+1) . This is also analogous to stating that this model 
primitive has the lowest inverse expected divergence between the ground truth next state dis-
tribution T(⋅ ∣ st, at) and its own predicted next state distribution T̂(⋅ ∣ st, at,Mk) . By accurately 
computing P(Mk ∣ st, at, st+1) , the agent will be able to learn a dedicated subpolicy for each 
region of specialization, decompose the task effectively, and finally achieve more sample-effi-
cient lifelong RL.

To compute P(Mk ∣ st, at, st+1) , we note that using Bayes’ rule:

because �k(at ∣ st) = �(at ∣ st,Mk).

(1)P(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st)𝜋k(at ∣ st)T̂(st+1 ∣ st, at,Mk)
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Intuitively, P(Mk ∣ st, at, st+1) should be higher for the kth model primitive if it is more 
accurate in predicting the current transition, or equivalently, if T̂(st+1 ∣ st, at,Mk) is higher. 
Hence the inclusion of T̂(st+1 ∣ st, at,Mk) in calculating P(Mk ∣ st, at, st+1) , as given by the 
Bayes’ rule.

However, the agent only has access to the current state st during execution. That is, the 
agent’s gating controller needs to correctly identify which of the K regions of specializa-
tion the current state st belongs to, without being able to observe at and st+1 in advance. 
Therefore, the agent needs to marginalize out st+1 and at such that the model choice only 
depends on the current state st:

This is equivalent to:

Unfortunately, computing these integrals not only requires at and st+1 , but also uses expen-
sive Monte Carlo methods. However, we can approximate P(Mk ∣ st) using discriminative 
learning [52].

Concretely, we parameterize the gating controller (GC) as a categorical distribution 
P�(Mk ∣ st) = P(Mk ∣ st;�) and learn � by minimizing the conditional cross entropy loss 
between �at∼�(⋅∣st),st+1∼T(⋅∣st ,at)

[
P(Mk ∣ st, at, st+1)

]
 and P�(Mk ∣ st) for all sampled transitions 

(st, at, st+1) in a rollout:

where

This is equivalent to an implicit Monte Carlo integration to compute the marginal if 
at ∼ �(⋅ ∣ st), st+1 ∼ T(⋅ ∣ st, at) . Although we cannot query �(at ∣ st) or T(st+1 ∣ st, at) 
directly, st, at , and st+1 can be sampled according to their respective distributions while 
we perform rollouts in the environment. Despite the introduced bias in our estimates, we 
find Eq. 4 with Eq. 5 sufficient for effectively uncovering a task decomposition encoded in 
the provided primitives that would later lead to sample efficiency improvement in lifelong 
learning.

3.1.3  Subpolicy composition

Taking inspiration from mixture-of-experts, the gating controller composes the subpolicies 
into a mixture policy:

See Fig. 2 for a concrete example. 

(2)P(Mk ∣ st) = ∫
st+1∈S

∫
at∈A

P(Mk ∣ st, at, st+1)�(at ∣ st)T(st+1 ∣ st, at)datdst+1

(3)P(Mk ∣ st) = �at∼�(⋅∣st),st+1∼T(⋅∣st ,at)

[
P(Mk ∣ st, at, st+1)

]

(4)minimize
�

L
GC

(5)L
GC =

∑
st

∑
k

−

(∑
st+1

∑
at

P(Mk ∣ st, at, st+1)

)
× logP(Mk ∣ st;�)

(6)�(at ∣ st) =

K∑
k=1

P�(Mk ∣ st)�k(at ∣ st)
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3.1.4  Decoupling cross entropy from action distribution

During a rollout, the agent samples at and st+1 as follows:

The �k from Eq. 1 gets coupled with this sampling distribution, making the target distri-
bution in Eq. 5 no longer stationary and the approximation process empirically difficult, 
as demonstrated in Sect. 4.3.10. We alleviate this issue by approximating �k(at ∣ st) with 
�(at ∣ st) , effectively treating the action distribution as a distribution independent of k and 
as a result, making the target distribution stationary. This transforms Eq. 1 into:

An alternative view of this same mathematical relationship is given by:

As the gating controller becomes increasingly discriminative and accurate, 
P(Mk ∣ st) ≈ P(Mk ∣ st, at) since the action at will not further inform the correct task 
decomposition. As a result:

(7)at ∼ �(⋅ ∣ st)

(8)st+1 ∼ T(⋅ ∣ st, at)

(9)

P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st)𝜋k(at ∣ st)T̂(st+1 ∣ st, at,Mk)

≈ P(Mk ∣ st)𝜋(at ∣ st)T̂(st+1 ∣ st, at,Mk)

∝ P(Mk ∣ st)T̂(st+1 ∣ st, at,Mk)

(10)P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st, at)T̂(st+1 ∣ st, at,Mk)
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Fig. 2  Visualization of the policy composition using the Gating Controller’s output in a Maze environment, 
where the amber four-legged robot is tasked to reach the green goal. The subpolicies �1,2,3,4 specialize in N, 
S, W, E corridors respectively (Color figure online)
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3.2  Learning

Since the focus of this work is on difficult continuous state and action problems, we mostly 
concentrate on the issue of policy optimization and how it integrates with the gating con-
troller. The standard policy (SP) optimization objective is:

With baseline subtraction for variance reduction, this turns into [55]:

where Ât is an estimator of the advantage function [7].
In MPHRL, we directly use the mixture policy as defined by Eq. 6. The standard policy 

gradients (PG) get weighted by the probability outputs of the gating controller, enforcing 
the required specialization by factorizing into:

In practice, we use the Clipped PPO objective  [56] instead to perform stable updates by 
limiting the step size. This includes adding a baseline estimator (BL) parameterized by � 
for value prediction and variance reduction. We optimize � according to the following loss:

We summarize this single-task learning algorithm in Algorithm 1, which results in a set of 
decomposed subpolicies, ��1 ,… ,��K , and a gating controller P� that can modulate between 
them to solve the task under consideration.

Lifelong learning: We have shown how MPHRL can decompose a single complex task 
solution into different functional components. Complex tasks often share structure and 
can be decomposed into similar sets of subtasks. Different tasks however require different 
recomposition of similar subtasks. Therefore, we transfer the subpolicies to learn target 
tasks, but not the gating controller or the baseline estimator. We summarize the lifelong 
learning algorithm in Algorithm 2, with the global variable RESET set to true.

(11)
P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st, at)T̂(st+1 ∣ st, at,Mk)

≈ P(Mk ∣ st)T̂(st+1 ∣ st, at,Mk)

(12)maximize
�

L
SP = ��0,��

[��(at ∣ st)Q��
(st, at)]

(13)maximize
𝜃

L
PG = �𝜌0,𝜋𝜃

[𝜋𝜃(at ∣ st)Ât]

(14)ĝk = �𝜌0,𝜋𝜃k

[
P𝜙(Mk ∣ st)∇𝜃k

log𝜋𝜃k (at ∣ st)Ât

]

(15)L
BL = �

[‖‖‖V� − V��

‖‖‖
2
]
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4  Experiments

Our experiments aim to answer two questions: (a) can model primitives ensure task decom-
position? (b) does such decomposition improve transfer for lifelong learning?

We evaluate our approach in two challenging domains: a MuJoCo [70] ant navigating 
different mazes and a Stacker  [64] arm picking up, placing and stacking different boxes. 
In our experiments, we use subpolicies that have Gaussian action distributions, with mean 
given by a multi-layer perceptron taking observations as input and standard deviations 
given by a different set of parameters. MPHRL’s gating controller outputs a categorical 
distribution and is parameterized by another multi-layer perceptron. We also use a separate 
multi-layer perceptron for the baseline estimator. We use the standard clipped PPO  [56] 
algorithm as a baseline to compare against MPHRL. Transferring network weights empiri-
cally led to worse performance for standard clipped PPO. Hence, we re-initialize the base-
line PPO’s weights for every task. For fair comparison, we also shrink the hidden layer size 
of MPHRL’s subpolicy networks from 64 to 16 (as detailed in Table 1). We conduct each 
experiment across 5 different seeds and report performance means and standard deviations. 
Error bars in all performance figures below represent the standard deviation from the mean.

The focus of this work is on understanding the usefulness of model primitives for task 
decomposition and the resulting improvement in sample efficiency from transfer. To con-
duct perfectly controlled experiments with reliable and interpretable results, we first con-
duct experiments with model primitives created using the true next state provided by the 
environment simulator, while later in Sect. 4.3.7 we present lifelong learning experiments 
with non-hand-crafted, learned model primitives that exhibited similar sample efficiency 
improvement. Concretely, we apply distinct multivariate Gaussian noise models with 
covariance �� to the true next state. We then sample from this distribution to obtain the 
mean of the probability distribution of a model primitive’s next state prediction, using � as 
its covariance. Here, � is the noise scaling factor that distinguishes model primitives, while 
� refers to the empirical covariance of the sampled next states:

(16)� ∼ N(st+1, �k�)

(17)T̂(st+1 ∣ st, at,Mk) = N(𝜇,𝛴)
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Table 1  Hyperparameters: MPHRL and baseline PPO

aSingle task refers to L-Maze and D-Maze; source and target tasks refer to the first task and all subsequent 
tasks in a lifelong learning taskset, respectively
bBaseline network hyperparameters apply to both MPHRL and baseline PPO; model primitive networks are 
for experiments with learned model primitives only
cThe baseline PPO has no subpolicies, so the subpolicy network is the policy network
dBaseline and subpolicy networks only

Category Hyper-parameter Value

Number of model primitives: Maze Single-task: L-Maze 2
Single-task: D-Maze 4
Lifelong learning: 10-Maze 4
Ablation: H-V 2
Ablation: velocity 2
Ablation: extra 5

Number of model primitives: 8-Pickup&Place lifelong learning: 8-Pickup&Place 12
Ablation: Box 2
Ablation: Action 6

Gating controller: network Hidden layers 2
Hidden dimension 64

Gating controller: base learning rate Single/source Taska (10-Maze) 1 × 10−3

Single/source task (8-Pickup&Place) 3 × 10−2

Target tasks 3 × 10−3

Gating controller: number of epoches/batch Single/source task 1
Target tasks 10

Baseline and model primitive networksb Hidden layers 2
Hidden dimension 64
Base learning rate 3 × 10−4

Subpolicy networksc Hidden layers 2
Hidden dimension (MPHRL) 16
Hidden dimension (PPO) 64
Base learning rate 3 × 10−4

Optimization Number of actors (10-Maze) 16
Number of actors (8-Pickup&Place) 24
Batch size/actor (10-Maze) 2048
Batch size/actor (8-Pickup&Place) 1536
Max. timesteps/task 3 × 107

Minibatch size/actor 256
Number of epoches/batchd 10
Discount ( �) 0.99
GAE parameter ( �) 0.95
PPO clipping coeff. ( �) 0.2
Gradient clipping None
VF coeff. ( c

1
) 1.0

Entropy coeff. ( c
2
) 0

Optimizer Adam
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Using � as opposed to a constant covariance is essential for controlled experiments 
because different elements of the observation space have different orders of magnitude. 
Sampling � from a distribution effectively adds random bias to the model primitive’s next 
state probability distribution.

Later on we relax these controlled experimental conditions and show how these model 
primitives can be trained in practice and how our framework can leverage such learned 
model primitives for task decomposition to achieve similar lifelong learning performance 
and sample efficiency improvement.

Our implementation is available at http://githu b.com/sisl/MPHRL , and the details for 
MPHRL and baseline PPO hyperparameters are presented in Table  1. Agent videos are 
available at 10-Maze Playl ist URL and 8-Picku p&Place  Playl ist URL.

4.1  Single‑task learning

First, we focus on two single-task learning experiments where MPHRL learns a number 
of interpretable subpolicies to solve a single task. Both the L-Maze and D-Maze (Fig. 3a) 
tasks require the ant to learn to walk and reach the green goal within a finite horizon. For 
both tasks, both the goal and the initial ant locations are fixed.

4.1.1  Observation space

The observation space for both the L-Maze and D-Maze includes the standard joint angles 
and velocities, lidar information that tracks distances from walls on each side, and the 
Manhattan distance to the goal.

L-Maze D-Maze

Tasks

0

5

10

15

20

25

30

T
im

es
te
ps

(×
10

6 )

MPHRL
PPO

(a) L-Maze (top) and D-Maze (bottom) (b) Performance

Fig. 3  Single-task learning

http://github.com/sisl/MPHRL
https://www.youtube.com/playlist?list=PLMcHQjX71xJ1bhlr-5sZnMqTQ_7kMoork
https://www.youtube.com/playlist?list=PLMcHQjX71xJ0RT6foK2JsDxPn-CVNdtPR
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4.1.2  Full details of reward structure

The reward at any given timesteps is composed of the forward reward, the control cost and 
the contact cost:

The forward reward is proportional to the difference in the (x, y) Euclidean distance to the 
next subgoal between the current and the previous timestep:

where

The subgoals are located at the end of each sub-corridor.
The contact and control costs remain the same as the original OpenAI Gym [10]:

.

4.1.3  Model primitives

For the L-Maze, the agent has access to two model primitives, one specializing in the hori-
zontal (E, W) corridor and the other specializing in the vertical (N, S) corridor of the maze. 
Similarly for the D-Maze, the agent has access to four model primitives, one specializing in 
each N, S, E, W corridor of the maze. In their specialized corridors, the noise scaling factor 
� = 0 . Outside of their regions of specialization, � = 0.5 . Note that we set � = 0 purely for 
the purpose of analysis.

4.1.4  Results and analysis

Section 4.3.7 shows that MPHRL is robust to learned, non-hand-crafted model primitives. 
Figure 3b shows the experimental results on these environments. Notice that using model 
primitives can increase the sample complexity on a single task. This is expected, since we 
are forcing the agent to decompose the solution for potential lifelong learning, which could 
be unnecessary for a single task. However, we will observe in the following section that 
this decomposition can lead to remarkable performance improvements in sequential knowl-
edge transfer during lifelong learning.

4.2  Lifelong learning

To evaluate our framework’s performance at lifelong learning, we introduce two tasksets: 
10-Maze and 8-Pickup&Place. In our experiments, we report number of timesteps to reach 
target average success rate of 80% for 10-Maze tasks and 75% for 8-Pickup&Place tasks. 

(18)rt = r
forward

t − ccontrol
t

− ccontact
t

(19)r
forward

t = 50 × (dt−1 − dt)

(20)dt =
‖‖‖[x

ant
t

− x
subgoal

t , yant
t

− y
subgoal

t ]
‖‖‖2

(21)ccontrol
t

= 0.5 × ‖‖at‖‖2

(22)ccontact
t

= 0.005 × ‖external_contact_forces‖2
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This is computed as the moving average of the percentages of success across 10 trailing 
iterations. During each iteration, each actor generates a complete trajectory that either suc-
ceeds or fails, and the percentage of success for this iteration is then computed by averag-
ing across all actors.

4.2.1  10‑Maze

To evaluate MPHRL’s performance in lifelong learning, we generate a family of 10 random 
mazes for the MuJoCo  [70] Ant environment, referred to as the 10-Maze lifelong learn-
ing taskset (Fig. 4) hereafter. The goal, the observation space, the Gaussian noise models, 
and the model primitives remain the same as in the D-Maze environment in Sect. 4.1. The 
full reward structure is also the same as “D-Maze”, as detailed in Sect. 4.1.2. Each task is 
considered successful when the ant is within a very small distance to the green goal. Oth-
erwise, the task is considered a failure. The agent has a maximum of 3 × 107 timesteps to 
reach 80% success rate in each of the 10 tasks. As shown in Fig. 5 and Table 2, MPHRL 
requires nearly double the number of timesteps to learn the useful, decomposed subpoli-
cies (Fig. 6) in the first task. However, this cost gets amortized over the entire taskset, with 
MPHRL taking half the total number of timesteps of the baseline PPO, exhibiting strong 
subpolicy transfer.

4.2.2  8‑Pickup&Place

We modify the Stacker task [64] to create the 8-Pickup&Place lifelong learning taskset. As 
shown in Fig. 7, a robotic arm is tasked to bring 2 boxes to their respective goal locations 
in a certain order. Marked by colors red, green, and blue, the goal locations reside within 
two short walls forming a “stack”.

Each of the 8 tasks has a maximum of 3 goal locations. The observation space of the 
agent includes joint angles and velocities, box and goal locations, the boxes’ relative 
distances to each other, and the current stage of the task encoded as one-hot vectors. The 
goal locations, the starting position and orientation of the robot, and the locations of the 
boxes are all initialized randomly for every episode. Furthermore, in order to allow the 

Fig. 4  The 10-Maze lifelong learning taskset
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baseline PPO to solve the taskset more easily, episodes in 8-Pickup&Place tasks can 
sometimes be initialized to the state where some boxes are already in their goal loca-
tions. The probability of such initialization is constant with respect to the remaining 
goal locations to solve. For example, in Task (e) in Fig. 7, with 1

3
 probability an episode 

is initialized with no boxes already in their goal locations. With another 1
3
 probability, 

the episode is initialized with the black box already in the left stack. With the remaining 
1

3
 probability, the episode is initialized with both the black and white boxes in the left 

stack (the white box will be on top of the black box), in which case all the robot has to 
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Fig. 5  10-Maze: MPHRL versus PPO for lifelong learning

Move East Move North Move West Move South

Fig. 6  4 decomposed subpolicies from the 10-Maze lifelong learning taskset
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do to complete the task is to move the white box from the left stack to the right stack. 
When all boxes are in their correct goal locations within a very small distance, the epi-
sode is considered successful. Otherwise, the episode is considered a failure.

The reward at any timestep is calculated as the difference in distance to the next task 
subgoal:

where

In Eq. 24, f1 refers to the left finger tip of the agent’s gripper, f2 refers to the right finger tip 
of the agent’s gripper, and � refers to the [x, y] 2D position of the grasp, box, target, a point 
above the box, or a point above the target.

(23)rt = dt−1 − dt

(24)

dt =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

10 ×
����grasp − �above_box

���2 if subgoal is reach above

20 ×
����grasp − �box

���2 if subgoal is lower to

50 ×
����f1 − �f2

���2 − 5 ×
����box − �target

���2 if subgoal is grasp

20 × �ygrasp − yabove_target� + ����f1 − �f2
���2 if subgoal is pick up

10 ×
����grasp − �above_target

���2 +
����f1 − �f2

���2 if subgoal is carry

5 − 20 ×
����f1 − �f2

���2 − 2 ×
����grasp − �box

���2 if subgoal is drop

(a)
Black Box → T1
White Box → T2

(b)
White Box → T1
Black Box → T2
Black Box → T3

(c)
White Box → T1
White Box → T2

(d)
Black Box → T1
Black Box → T2
White Box → T3

(e)
Black Box → T1
White Box → T2
White Box → T3

(f)
Black Box → T1
Black Box → T2
Black Box → T3

(g)
White Box → T1
Black Box → T2

(h)
White Box → T1
Black Box → T2
Black Box → T3

Fig. 7  The 8-Pickup&Place lifelong learning taskset. T1, T2, and T3 refer to Target Goal Location 1 (red), 
Target Goal Location 2 (green), and Target Goal Location 3 (blue) (Color figure online)
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The agent has access to six model primitives for each box that specialize in approach-
ing, lowering to, grasping, picking up, carrying, and dropping a certain box respectively. 
Similar to 10-Maze, model primitives have � of 0 within their specialized stages and � of 
0.5 otherwise, purely for the purpose of analysis. Figure 8 and Table 3 show MPHRL’s 
experimental performance by learning twelve useful subpolicies (Fig. 9) for this taskset. 
We notice again the strong transfer performance due to the decomposition forced by the 
model primitives. Note that this taskset is much more complex than 10-Maze such that 
MPHRL even accelerates the learning of the first task ( 4.0 ± 0.4 vs. 8.3 ± 4.2).

4.3  Ablation

We conduct ablation experiments to answer the following questions: 

1. How much gain in sample efficiency is achieved by transferring subpolicies?
2. Can MPHRL learn good task decomposition even when the model primitives are quite 

noisy or when the source task does not cover all “cases” (partial decomposition)?
3. When does MPHRL fail to decompose the solution?
4. What kind of diversity in the model primitives is essential for performance?
5. When does MPHRL lead to negative transfer [23, 53]?
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Fig. 8  8-Pickup&Place: MPHRL versus PPO for lifelong learning
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6. Is MPHRL’s gain in sample efficiency a result of hand-crafted model primitives and 
how does it perform with non-hand-crafted, learned model primitives?

4.3.1  Model noise

MPHRL has the ability to decompose the solution even given bad model primitives. Since 
the learning is done model-free, these suboptimal model primitives should not strongly 
affect the learning performance so long as they remain sufficiently distinct. To investigate 
the limitations to this claim, we conduct five 10-Maze experiments using various sets of 
noisy model primitives. Below, the first value corresponds to the noise scaling factor � 
within their individual regions of specialization, while the second value corresponds to � 
outside of their regions of specialization. 

(a) 0.4 and 0.5: good model primitives with limited distinction
(b) 0.5 and 1.0: good model primitives with reasonable distinction
(c) 5.0 and 10.0: bad model primitives with reasonable distinction
(d) 9.0 and 10.0: bad model primitives with limited distinction
(e) 0.5 and 0.5: good model primitives with no distinction

As shown in Fig.  10 and Table  4, (a), (b), (c), and (d) exhibit limited degradation in 
10-Maze performance and still outperform baseline PPO ( 88.2 ± 2.2 as exhibited in 
Table 2). On the other hand, in (e) MPHRL took 22.0 ± 4.6 million timesteps to solve the 

Approach
Black Box

Lower to
Black Box

Grasp
Black Box

Pick up
Black Box

Carry
Black Box

Drop
Black Box

Approach
White Box

Lower to
White Box

Grasp
White Box

Pick up
White Box

Carry
White Box

Drop
White Box

Fig. 9  12 decomposed subpolicies from the 8-Pickup&Place lifelong learning taskset

Table 3  8-Pickup&Place: MPHRL versus PPO for lifelong learning

Algo-
rithm

Timesteps to reach 75% average success rate ( ×106)

1 2 3 4 5 6 7 8 Total

MPHRL 4.0 ± 0.4 2.4 ± 0.3 1.6 ± 0.4 2.3 ± 1.0 2.7 ± 3.8 1.6 ± 1.0 6.8 ± 4.1 6.3 ± 5.8 27.6 ± 12.0

PPO 8.3 ± 4.2 10.3 ± 9.9 2.5 ± 0.6 12.2 ± 10.08.1 ± 4.9 2.6 ± 0.3 7.6 ± 4.0 7.7 ± 2.4 59.2 ± 22.9
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first task and 2.8 ± 1.6 million timesteps to solve the second task, but failed to solve the 
third task within 30 million timesteps. This is because the model primitives are identical 
and provide no information about task decomposition. Figure 11 and Table 5 show similar 
results for 8-Pickup&Place, where bad, noisier model primitives (5 and 20) actually out-
perform good, less noisy (0 and 0.5) model primitives mainly due to a larger distinction 
among the model primitives. In summary, MPHRL is robust against bad model primitives 
so long as they maintain some relative distinction.

4.3.2  Overlapping model primitives

We next test the condition when there is substantial overlap in regions of specialization 
between different model primitives. For the 10-Maze taskset, the most plausible region 
for this confusion is at the corners. In this experiment, within each corner, the two model 
primitives whose specialized corridors share the corner have � = 0 while the other two 
have � = 0.5 . Again, we set � = 0 purely for analysis purpose, and Sect. 4.3.7 shows that 
MPHRL is robost to learned, non-hand-crafted model primitives. Figure 12 and Table 6 
show the performance for model primitive confusion at the corners against the standard set 
of model primitives with no confusion. We observe that despite some performance degra-
dation due to overlapping regions of specialization between the model primitives, MPHRL 
continues to outperform the PPO baseline ( 53.8 ± 10.6 vs. 88.2 ± 2.2).
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Fig. 10  10-Maze: effect of model noise on MPHRL sample complexity
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4.3.3  Model diversity

Having tested MPHRL against model primitive noises and corner confusion, we experi-
mented with sets of model primitives that are less desirable for 10-Maze: 

(a) Extra: a fifth model primitive that specializes in states where the ant is moving hori-
zontally; this is undesirable because this extra model primitive is redundant and can 
overlap with both the E and W model primitives.

(b) H-V: 2 model primitives specializing in horizontal (E, W) and vertical (N, S) corridors 
respectively; this is undesirable because such under-specification of the regions of spe-

Table 5  8-Pickup&Place: effect of model noise on MPHRL sample complexity

Noise Timesteps to reach 75% average success rate ( ×106)

T F 1 2 3 4 5 6 7 8 Total

0 0.5 4.0 ± 0.4 2.4 ± 0.3 1.6 ± 0.4 2.3 ± 1.0 2.7 ± 3.8 1.6 ± 1.0 6.8 ± 4.1 6.3 ± 5.8 27.6 ± 12.0

5 20 4.5 ± 0.9 1.8 ± 0.2 1.7 ± 0.4 1.5 ± 0.6 1.0 ± 0.5 1.1 ± 0.5 2.2 ± 2.3 2.0 ± 2.3 15.8 ± 5.5
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Fig. 11  8-Pickup&Place: effect of model noise on MPHRL sample complexity
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cialization forces the ant agent to learn a single subpolicy for moving in both east and 
west corridors, and another subpolicy for moving in both north and south corridors.

(c) Velocity: 2 model primitives specializing in states where the ant agent is moving hori-
zontally and vertically respectively; this is undesirable because such under-specification 
of the regions of specialization forces the ant agent to learn a single subpolicy for mov-
ing both east and west, and another subpolicy for moving both north and south.

and for 8-Pickup&Place: 

(a) Box: 2 model primitives for all maneuvers on 2 boxes; this is undesirable because such 
under-specification of the regions of specialization forces the robot to learn one single 
subpolicy for all six different maneuvers on each box.

(b) Action: 6 model primitives for 6 maneuvers performed on boxes: approach, lower to, 
grasp, pick up, carry, and drop; this is undesirable because such under-specification 
of the regions of specialization forces the robot to learn one single subpolicy for each 
type of maneuver on all boxes.

Table 7 shows MPHRL is susceptible to some performance degradation given undesira-
ble sets of model primitives. However, MPHRL still outperforms baseline PPO ( 50.7 ± 4.3 
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Fig. 12  10-Maze: Effect of model primitive confusion at the corners
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vs. 88.2 ± 2.2 ) when given an extra, undesirable model primitive. This indicates that for 
best transfer, the model primitives need to approximately capture the structure present in 
the taskset and avoid under-specification of regions of specialization.

4.3.4  Negative transfer and catastrophic forgetting

Lifelong learning agents with neural network function approximators face the problem of 
negative transfer and catastrophic forgetting. Negative transfer implies that the inductive 
bias learned by the agent on a subset of tasks during lifelong learning makes it worse at the 
full set of tasks. Ideally, the agent should find the solution quickly if the task has already 
been seen. More generally, given two sets of tasks T and T ′ such that T ⊂ T ′ , after being 
exposed to T ′ the agent should perform no worse (indicating no catastrophic forgetting), 
and preferably better (indicating positive transfer), than had it been exposed to T only.

In this 10-Maze experiment, we restore the subpolicy checkpoints after solving the 
10 tasks and evaluate MPHRL’s learning performance on the first 9 tasks. Similarly, we 
restore the subpolicy checkpoints after solving the first 6 tasks and evaluate MPHRL’s per-
formance on the first 5 tasks. The gating controller is reset for each task as in earlier experi-
ments. We summarize the results in Table 8. MPHRL agents trained sequentially on 6 or 
10 tasks quickly relearn the required behavior for all previously seen tasks, implying no 
catastrophic forgetting and that negative transfer is very limited with this approach. Moreo-
ver, if we compare the 10-task result to the 6-task result, we see remarkable improvements 
at transfer. This shows that MPHRL’s robustness against catastrophic forgetting and nega-
tive transfer can increase with the number of seen tasks.

4.3.5  Oracle gating controller

One might suspect that all gains in sample efficiency come from hand-crafted model primi-
tives because they allow the agent to learn a perfect gating controller. However, Fig. 13 
shows that when the gating controller is already perfectly known, the reward curves for a 
10-Maze experiment plateau at around 200, much lower than the required reward threshold 
of 800. As a result, this setup is unable to solve any 10-Maze tasks.

Since the 10-Maze taskset is composed of sequential subtasks, only one subpolicy will 
be learned in the first corridor when the gating controller is perfect. When transitioning to 
the second corridor, the second subpolicy needs to be learned from scratch, making the 
ant’s subsequent rewards negative. This discourages the first subpolicy from entering the 
second corridor and activating the second subpolicy. Eventually, the ant stops moving for-
ward close to the intersection between the first two corridors due to risk aversion.

More specifically, a random subpolicy could easily flip the ant agent upside down, 
after which the agent will no longer be able to move forward. As a result, the for-
ward reward remains close to zero, while the control and contact costs continue to 

Table 8  10-Maze: effect of experience

# Tasks Timesteps to reach 80% average success rate ( ×106)

1 2 3 4 5 6 7 8 9

10 0.6 ± 0.1 0.4 ± 0.0 0.6 ± 0.0 0.5 ± 0.1 0.4 ± 0.0 2.3 ± 0.7 0.7 ± 0.2 2.6 ± 0.3 0.7 ± 0.1

6 3.1 ± 0.4 2.0 ± 0.2 3.5 ± 0.7 2.2 ± 0.7 1.8 ± 0.3
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accumulate until episode termination. Indeed, if the two costs are eliminated, perhaps 
the first subpolicy will not prevent the agent from entering the second corridor and 
then the second subpolicy will train. Nevertheless, it will still take time for the each 
subsequent subpolicy to learn to prevent the ant from going upside down. In contrast, 
MPHRL’s natural curriculum for gradual specialization allows multiple subpolicies 
to learn the basic skills for survival (not flipping the ant upside down) initially and 
simultaneously.

Here, we are providing a common issue found when using an oracle gating con-
troller, where MPHRL’s natural curriculum can help resolve. This issue is common in 
multi-stage tasks, particularly when the reward structure results in a random subpolicy 
in a subtask generating a negative cumulative reward. In this scenario, the subpolicy 
in the previous subtask actually learns to prevent the agent from entering the next sub-
task, causing globally suboptimal behavior.

4.3.6  Partial decomposition

To confirm that the ordering of tasks does not significantly affect MPHRL’s perfor-
mance, we modified the 10-Maze taskset to create the 10-Maze-v2 taskset (Fig. 14), in 
which the source task does not allow for complete decomposition into all useful sub-
policies for the subsequent target tasks (there are no west corridors in the source task). 
The success rate threshold is at 70% . Again, we observe large improvement in sam-
ple efficiency over standard PPO (Fig. 15 and Table 9), demonstrating that MPHRL is 
robust against partial decomposition during lifelong learning.

Fig. 13  Average rewards of 
MPHRL when using an oracle 
gating controller. The reward 
threshold for reaching 80% 
success rate for the first task is 
approximately 800
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4.3.7  Learned model primitives

So far, this article has primarily focused on evaluating suboptimal world models for 
task decomposition in perfectly controlled experiments using hand-crafted model primi-
tives. Now, we demonstrate that MPHRL is robust to learned, non-hand-crafted model 

Fig. 14  The 10-Maze-v2 lifelong learning taskset
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Fig. 15  10-Maze-v2: performance under partial decomposition and using learned model primitives
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primitives. Here, we show one way to learn each model primitive for 10-Maze-v2 using 
three simple corridor environments demonstrated in Fig. 16. Concretely, we parameterize 
each model primitive using a multivariate Gaussian distribution. We learn the mean of this 
distribution via a multi-layer perceptron using a weighted mean square error in dynamics 
prediction as the training loss. The standard deviation is still derived from the empirical 
covariance � as described earlier. In this manner, model primitives can be learned straight-
forwardly via supervised learning. Even though the diversity in these learned model primi-
tives is much more difficult to quantify and control than hand-crafted model primitives, 
their sample efficiency still substantially outperforms standard PPO and slightly underper-
forms hand-crafted model primitives with 0 and 0.5 model noises (Fig. 15 and Table 9).

Each model primitive took 3.3 × 106 timesteps to train, totaling 13.2 × 106 timesteps. 
Adding this cost to the 55.2 × 106 mean sample complexity of MPHRL using learned 
model primitives gives a total of 68.4 ± 11.0 × 106 timesteps, which still significantly out-
performs 106.1 ± 8.1 timesteps in the case of the baseline. In addition, the cost of learning 
model primitives is only a one-time cost (as opposed to a per-task cost) that gets amortized 
more significantly as the number of tasks increases, and here we have only used 10 tasks 
per lifelong learning experiment.

4.3.8  Gating controller transfer

Since the task decomposition varies across tasks, MPHRL transfers the subpolicies but not 
the gating controller during target task learning. To explore factors that could lead to nega-
tive transfer, we tested a version of MPHRL that does not re-initialize but rather transfers 
the gating controller in target tasks, as shown in Table 10 and Fig. 17 (in Gating and Sub-
policies Transfer). Although the mean sample efficiency remains stable, its standard devia-
tion increases, indicating volatility due to both positive and negative transfer. To avoid such 
volatility in transfer performance, MPHRL re-initializes the gating controller during target 
task learning.

4.3.9  Subpolicy transfer

To measure how much gain in sample efficiency MPHRL has achieved by transferring sub-
policies alone, we conducted a 10-Maze experiment by re-initializing all network weights 
for every new task, essentially disabling any transfer. As shown in Table 10 and Fig. 17 
(in No Gating or Subpolicies Transfer), sample complexity more than quintuples when 

Fig. 16  Three simple corridor environments for learning the “N” model primitive
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subpolicies are re-initialized. This demonstrates the significant sample efficiency improve-
ment MPHRL achieves by transferring subpolicies.

4.3.10  Coupling between cross entropy and action distribution

To validate using P̂(Mk ∣ st, at, st+1) in Eq. 9 as opposed to P(Mk ∣ st, at, st+1) from Eq. 1, 
we tested MPHRL with Eq.  1 on 10-Maze. All runs with different seeds failed to solve 
the first 5 tasks (Table 11). As the gating controller is re-initialized during transfer, most 
actions were chosen incorrectly. The gating controller is thus presented with the incorrect 
cross entropy target, which worsens the action distribution. The resulting vicious cycle 
forces the gating controller to converge to a suboptimal equilibrium against the incorrect 
target. Therefore, MPHRL adopts Eq. 9 rather than Eq. 1 to learn task decomposition.

5  Conclusions

In this paper, we showed how imperfect or even bad world models, i.e. model primi-
tives, can be used to decompose a complex task into simpler subtasks. We introduced a 
framework that uses these model primitives to learn piecewise functional decompositions 
of solutions to complex tasks. The learned decomposed subpolicies can then be used to 
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transfer to a variety of related tasks, reducing the overall lifelong learning sample com-
plexity required to learn complex behaviors. Our experiments showed that such structured 
decomposition avoids negative transfer and catastrophic interference, two major concerns 
for lifelong learning systems. The experiments also demonstrated that MPHRL substan-
tially improves lifelong learning sample efficiency with both learned and hand-crafted 
model primitives.

Our approach does not require access to accurate or hand-crafted model primitives. Nei-
ther does it need a well-designed task distribution (as in the case of meta-learning) or the 
incremental introduction of individual tasks. So long as the set of model primitives are suf-
ficiently distinctive across the task distribution, MPHRL is robust to other imperfections.

6  Future work

6.1  Automatic task decomposition via online model primitive discovery

Learning useful and diverse model primitives, subpolicies and gating controller (i.e. task 
decomposition) all simultaneously is an important area for future work. Below we outline 
one idea that could make model-primitive-based automatic task decomposition possible.

Automatic discovery of model primitives, that is, without hand-crafted environment 
setup, means that no additional environments should be built solely for the purpose of 
learning model primitives. In other words, the only environment that model primitive 
learning can take place will be the source task environment itself. Under this scenario, 
model primitives, the gating controller and the subpolicies must be learned together simul-
taneously. From this perspective, the problem of automatic discovery of model primitives 
is the same as the problem of automatic task decomposition, or the challenge of simultane-
ously learning all three components of MPHRL.

Since the main requirement for a good set of model primitives is diversity, one can 
imagine the possibility of learning all three components of MPHRL at once online. At the 
beginning of training, it is unclear how many model primitives are needed, so the maxi-
mum number of model primitives allowed, Kmax , will be defined, e.g. Kmax = 10 . On the 
other hand, it is initially unclear what the optimal number of model primitives (or sub-
policies), K, will be. Therefore at the beginning of training, we assume that K = 1 , and we 
increment K later during exploration when the agent realizes that more model primitives 
are needed. The key insight here is that in order to learn diverse model primitives, the data 
used to train these model primitives have to be diverse. Therefore, there needs to be an 
uncertainty threshold, � , below which a sample (st, at, rt, st+1) will be allowed to be used to 
train a particular model primitive. In other words, each of the model primitives will only be 
trained on samples that the primitive itself finds not too surprising. A concrete instance of � 
for Gaussian model primitives can be the maximum mean square error between the ground 
truth next state and the predicted next state, below which the sample will be allowed to 
train the kth model primitive T̂k:

Table 11  10-Maze: effect of 
coupling between cross entropy 
and action distribution

Task Timesteps to reach 80% average success rate ( ×106)

1 2 3 4 5

Timesteps ( ×106) 15.5 ± 1.2 3.4 ± 1.1 19.3 ± 8.0 28.9 ± 2.5 N/A
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In the case where there are samples that no existing model primitive is familiar with (under 
the uncertainty threshold), a new model primitive will need to be trained to cover this new 
portion of the world states. In this case, we increment K and a new model primitive is 
added to the existing set. This process can repeat until MPHRL solves the entire source 
task, concurrently learning a set of model primitives, the same number of subpolicies and a 
gating controller. This idea can be summarized in Algorithm 3.

Using this algorithm to learn model primitives simultaneously does not necessarily 
result in learning suboptimal model primitives. In the 10-Maze environments, for example, 
this algorithm will not necessarily learn only 2 model primitives specializing in horizontal 
and vertical corridors, as opposed to learning 4 model primitives specializing in each of the 
N, E, S, W corridors. This is because given a good � hyperparameter, the existing model 
primitives will remain stable and untrained (e.g. E and N directions in the horizontal and 
vertical corridors respectively), while new model primitives are being added and trained 
(e.g. W and S directions in the horizontal and vertical corridors respectively). When enter-
ing the first W or S corridor, the E and N model primitives will find the W and S corri-
dors unfamiliar in terms of next state transitions. When this unfamiliarity exceeds � , these 
unfamiliar transitions will not be allowed to train the E and N model primitives. In this 
case, Algorithm 3 will create new model primitives (i.e. the W and S model primitives) to 
handle the new W and S corridors. On the other hand, the sequential nature of Algorithm 3 
ensures that E and N model primitives will be specialized enough such that transitions in 
the W and S corridors will appear unfamiliar to them.

(25)�{(st, at, rt, st+1) is allowed to train T̂k} = �

{‖‖‖st+1 − T̂𝜒k
(st, at)

‖‖‖
2 ≤ 𝛽

}
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6.2  Automatic task decomposition via neural processes and information 
bottlenecks

Given its ability to represent a distribution over stochastic processes, the recently intro-
duced Neural Processes  [22] can potentially be an efficient approach to build upon for 
model primitive learning. This approach can allow moving beyond simple discrete sets of 
model primitives to instead capturing the different uncertainties in a single model. It will 
also allow more complex gating controller than allowed by a simple categorical distribu-
tion. Moreover, change in uncertainties from low to high can lead to a better signal for 
learning a new model primitive.

Another interesting direction to take would be to achieve hierarchy through information-
bottleneck  [25, 30]. Modules specializing for different domains via different information 
bottlenecks could help fully automate the learning of task decomposition. An early attempt 
has been made in Goyal et al. [26] to set up an intrinsic competition mechanism to select 
the active subpolicy for a given input. Each subpolicy primitive has an information bot-
tleneck on how much information it can use for a given input state. However, even for 
relatively simpler continuous control tasks, the policies required pre-training. Moreover, 
their objective is to achieve implicitly decentralized control. Still, similar ideas can also be 
applied in the context of model primitive learning. The K model primitives can be com-
posed of an encoder penc(Zk ∣ st, at) and a decoder pdec(st+1 ∣ Zk) . Here the output of the 
encoder, Z, captures the useful information in the current state and action and the decoder 
takes this encoded information to produce a distribution over next states. Together they can 
function as model primitives:

with information bottleneck enforced by penalizing KL divergence of Z and a prior. This 
however does not necessarily lead to specialization of individual primitives in different 
parts of the state space and would require a similar competitive pressure as in Goyal et al. 
[26] to get weights over activation of individual primitives based on the primitive encoder’s 
information content. Given models generalize a lot better than individual policies across 
different tasks, our hypothesis is that this would be more effective than the direct decompo-
sition of policies. We aim to pursue this empirical enquiry in future work.
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