
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:28
https://doi.org/10.1007/s10458-020-09451-0

1 3

Model primitives for hierarchical lifelong reinforcement
learning

Bohan Wu1 · Jayesh K. Gupta2 · Mykel Kochenderfer2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Learning interpretable and transferable subpolicies and performing task decomposition
from a single, complex task is difficult. Such decomposition can lead to immense sample
efficiency gains in lifelong learning. Some traditional hierarchical reinforcement learning
techniques enforce this decomposition in a top-down manner, while meta-learning tech-
niques require a task distribution at hand to learn such decompositions. This article pre-
sents a framework for using diverse suboptimal world models to decompose complex task
solutions into simpler modular subpolicies. Given these world models, this framework per-
forms decomposition of a single source task in a bottom up manner, concurrently learning
the required modular subpolicies as well as a controller to coordinate them. We perform a
series of experiments on high dimensional continuous action control tasks to demonstrate
the effectiveness of this approach at both complex single-task learning and lifelong learn-
ing. Finally, we perform ablation studies to understand the importance and robustness of
different elements in the framework and limitations to this approach.

Keywords Reinforcement learning · Task decomposition · Transfer · Lifelong learning ·
Hierarchical learning

1 Introduction

Lifelong learning [67] is the ability of a system to continuously learn from data, building
on what has been previously learned. In the context of reinforcement learning, we want a
lifelong learning agent to continue solving a series of related tasks drawn from a task dis-
tribution rather than a single, isolated task. Agents should be able to transfer knowledge

 * Jayesh K. Gupta
 jkg@cs.stanford.edu

 Bohan Wu
 bohan.wu@columbia.edu

 Mykel Kochenderfer
 mykel@stanford.edu

1 Columbia University, New York, USA
2 Stanford University, Stanford, USA

http://orcid.org/0000-0002-4742-9942
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09451-0&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 2 of 38

gained in previous tasks to improve performance on future tasks. This setting is differ-
ent from multi-task reinforcement learning [63, 65, 72] and various meta-reinforcement
learning settings [3, 18, 19, 21, 27, 73], where the agent is jointly trained on multiple task
environments. Not only do such non-incremental settings make the problem of discovering
common structures between tasks easier, they also allow the methods to ignore the problem
of catastrophic forgetting [46], which is the inability to solve previous tasks after learning
to solve new tasks in a sequential learning setting. We refer the reader to Parisi et al. [50]
for an extensive review.

Our work takes a step towards solutions for such incremental, sequential settings [66].
We draw on the idea of modularity [48], i.e. complex behavior is often built from the com-
position of simpler building blocks. While learning to perform a complex task, we force the
agent to perform task decomposition: breaking its solution down into simpler subpolicies
instead of learning a single monolithic policy. This task decomposition allows our agent to
rapidly learn another related task by transferring subpolicies learned from previous tasks.
We hypothesize that many complex tasks are heavily structured and hierarchical in nature.
The likelihood and quality of transfer of an agent’s solution increases if it can capture such
shared structure.

Recent works have visited the problem of task decomposition from a variety of view-
points. For example, to reduce the sample complexity of task decomposition, the ideas of
state abstraction [1, 2, 4, 5, 12, 28, 36, 41] and state aggregation [9, 47, 51] are introduced
to compress the original state representation into one that eases learning of decomposition.
Moreover, Isele and Cosgun [33] introduced selective memory storage and distribution
matching to prevent catastrophic forgetting. Finally, Isele et al. [34] leverages the availabil-
ity of high-level task descriptors to achieve zero-shot lifelong learning transfer.

A key ingredient of our proposal is the idea of world models [29, 37, 40]—transition
models that can predict future sensory data given the agent’s current actions and observa-
tions. Often these can be learned in a semi-supervised [29] or supervised [49] manner. The
world however is complex, and learning models that are consistent enough to plan with is
not only hard [62], but planning with such one-step models is also suboptimal [32]. We
posit that the requirement that these world models be good predictors of the world state
is unnecessary, provided we have a multiplicity of such models. We use the term model
primitives to refer to these suboptimal world models. Since each model primitive is only
relatively better at predicting the next states within a certain region of the environment
space, we call this area the model primitive’s region of specialization.

Model primitives allow the agent to decompose the task being performed into subtasks
according to their regions of specialization and learn a specialized subpolicy for each of
these regions or subtasks. The same model primitives are used to learn a gating controller
to improve, adapt and compose the various subpolicies to solve a given task in a manner
similar to a mixture of experts framework [45].

Our framework assumes that at least a subset of model primitives are useful across a
range of tasks and environments. This assumption is less restrictive than that of succes-
sor representations [8, 14, 24, 39, 43, 44, 74, 76]. Even though successor representations
decouple the state transitions from the rewards (representing the tasks or goals), the transi-
tions learned are policy dependent and can only transfer across tasks that share the same
environment dynamics.

There are alternative approaches to learning hierarchical spatio-temporal decomposi-
tions from the rewards seen while interacting with the environment, with Options [61] being
the most widely applied framework to formalize the notion of a subpolicy in a sequential
decision making process. Such approaches include the option-critic architecture [6] and

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 3 of 38 28

follow-on works [16, 31, 35, 42, 69, 75] that allow learning such decompositions in a sin-
gle task environment. However, this method requires regularization hyperparameters that
are tricky to set. As observed by Vezhnevets et al. [71], its learning often collapses to a sin-
gle subpolicy. Other strategies require hand-designed features [20] or priors that promote
diversity [13, 17] for hierarchical learning.

Moreover, we posit that capturing the shared structure across task-environments can be
more useful in the context of transfer for lifelong learning than reward-based task specific
structures. First, using sub-options for task decomposition requires gradient signals from
rewards, which could be less stable due to sparsity. If sub-options are frozen during task
decomposition, then they must be near-optimal, which model primitives need not be. If
sub-options are not frozen and open for learning, then at the beginning of training, the
higher-level controller is not accurately performing task decomposition, resulting in the
wrong gradients being back-propagated into the sub-options, causing the sub-options them-
selves to change and no longer being near-optimal in their own specific tasks. In short,
sub-option hierarchical learning is subject to the nonstationary bidirectional interplay
between sub-options and task decomposition. During learning, either one can affect the
other. In comparison, the task composition based on model primitives is achieved through
supervised learning and independent of subpolicy performance. The interplay is unidi-
rectional—the gating controller is affected by model primitives, but the model primitives
remain unchanged throughout lifelong learning. Second, model primitives are sub-optimal
and need not be accurate as we will demonstrate later in this work. In comparison, the pro-
vided sub-options need to be near-optimal for effective task decomposition. Third, model
primitives are not specific to behaviors, but specific to environments, while sub-options
are behavior-specific. Future work can build on our work to explore how model primi-
tives can be utilized to decompose different behaviors and subtasks within the same local
environments.

Other approaches include meta-learning algorithms such as Meta-Adaptation [3], Meta-
Critic [59] and Meta-Learning Shared Hierarchies (MLSH) [21], which require a multiplic-
ity of pretrained subpolicies or joint training on related tasks, which limits their ability to
perform well in the sequential lifelong learning setting. While not in the field of reinforce-
ment learning, Shamwell et al. [57] leveraged deep neural networks to learn a multiplicity
of world models simultaneously.

To summarize our contributions:

• Given diverse suboptimal world models that can be practically learned, we propose an
effective method to uncover a task decomposition encoded in these models.

• We propose an architecture to jointly train all decomposed subpolicies and a gat-
ing controller to solve a given source task and achieve significant sample efficiency
improvements in solving target tasks in lifelong learning.

• We demonstrate the effectiveness of this approach at both single-task and lifelong learn-
ing in complex domains with high-dimensional observations and continuous actions.

2 Preliminaries

We assume the standard reinforcement learning (RL) formulation: an agent interacts
with an environment to maximize the expected reward [60]. The environment is mod-
eled as a Markov decision process (MDP), which is defined by ⟨S,A,R, T, �⟩ with a

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 4 of 38

state space S , an action space A , a reward function R ∶ S ×A → ℝ , a dynamics
model T ∶ S ×A → �(S) , and a discount factor � ∈ [0, 1] . Here, �(⋅) defines a prob-
ability distribution over a set. The agent acts according to stationary stochastic policies
� ∶ S → �(A) , which specify action choice probabilities for each state. Each policy
� has a corresponding Q� ∶ S ×A → ℝ function that defines the expected discounted
cumulative reward for taking an action a from state s and following the policy � from
that point onward.

2.1 Lifelong reinforcement learning

In a lifelong learning setting, the agent must sequentially interact with multiple tasks and
successfully solve each of them. Let N denote the total number of tasks to learn. Adopt-
ing the framework from Brunskill and Li [11], in lifelong RL, the agent receives S,A ,
initial state distribution �0 ∈ �(S) , horizon H, discount factor � , and an unknown distribu-
tion over reward-transition function pairs, D. The agent samples (Ri, Ti) ∼ D and interacts
with the MDP ⟨S,A,Ri, Ti, �⟩ for a maximum of H timesteps, starting according to the
initial state distribution �0 , where i ∈ {1,… ,N} . After solving the given MDP or after H
timesteps, whichever occurs first, the agent resamples from D and repeats.

2.2 Decomposed representation

The fundamental question in lifelong learning is to determine what knowledge should be
captured by the agent from the tasks it has already solved so that it can improve its per-
formance on future tasks. When learning with functional approximation, this translates to
learning the right representation—the one with the right inductive bias for the tasks in the
distribution. Given the assumption that the set of related tasks for lifelong learning share a
lot of structure, the ideal representation should be able to capture this shared structure.

Thrun and Pratt [68] summarized various representation decomposition methods into
two major categories. Modern approaches to avoiding catastrophic forgetting during trans-
fer tend to fall into either category. The first category partitions the parameter space into
task-specific parameters and general parameters [54]. The second category learns con-
straints that can be superimposed when learning a new function [38].

A popular approach within the first category is to use what Thrun and Pratt [68] term
as recursive functional decomposition. This approach assumes that the task solution can
be decomposed into a function of the form fi = hi◦g , where hi is task-specific whereas g is
the same for all fi and i ∈ {1,… ,N} . This scheme has been particularly effective in com-
puter vision where early convolutional layers in deep convolutional networks trained on
ImageNet [15, 58] become a very effective g for a variety of tasks. However, this approach
to decomposition often fails in DeepRL because of two main reasons. First, the gradients
used to train such networks are noisier as a result of Monte Carlo sampling. Second, the
i.i.d. assumption for training data often fails.

We instead focus on devising an effective piecewise functional decomposition of the
parameter space, as defined by Thrun and Pratt [68]. The assumption behind this decom-
position is that each function fi can be represented by a collection of functions h1,… , hK ,
where K ≪ N , and N is the number of tasks to learn. Our hypothesis is that this type of
decomposition is much more effective and easier to learn in RL.

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 5 of 38 28

3 Model primitive hierarchical reinforcement learning

This section outlines the Model Primitive Hierarchical Reinforcement Learning (MPHRL)
framework (Fig. 1) to address the problem of effective piecewise functional decomposition
for transfer across a distribution of tasks.

3.1 Model primitives and gating

The key assumption in MPHRL is access to several diverse world models of the envi-
ronment dynamics. These models can be seen as instances of learned approximations to
the true environment dynamics T . In reality, these dynamics can even be non-stationary.
Therefore, the task of learning a complete model of the environment dynamics might be
too difficult. Instead, it can be much easier to train multiple approximate models that spe-
cialize in different parts of the environment. We use the term model primitives to refer to
these approximate world models.

The number of model primitives K depends mainly on the specific environment and
domain. As demonstrated in Sect. 4.3.3, this quantity K need not be exact for MPHRL to
achieve significant sample efficiency improvement in lifelong learning, but a larger number
of diverse model primitives (over-specification of regions of specialization) is more favora-
ble than a smaller number of diverse model primitives (under-specification of regions of
specialization).

Suppose we have access to K model primitives: T̂k ∶ S ×A → 𝛱(S) , where
k ∈ {1,… ,K} . For simplicity, we can assign a label Mk to each T̂k , such that their predic-
tions of the environment’s transition probabilities can be denoted by T̂(st+1 ∣ st, at,Mk).

3.1.1 Subpolicies

The goal of the MPHRL framework is to use these suboptimal predictions from different
model primitives to decompose the task space into their individual regions of specializa-
tion, and learn different subpolicies �k ∶ S → �(A) that can focus on these regions. In
the function approximation regime, each subpolicy �k belongs to a fixed class of smoothly
parameterized stochastic policies {��k ∣ �k ∈ �} , where � is a set of valid parameter
vectors.

πKπ3π2πk

TKT3T2T̂k

×

Gating controller

EnvironmentP (Mk | st)

at

st, rt

Fig. 1 Diagram of MPHRL Architecture. Solid arrows are active during both learning and execution. Dot-
ted arrows are active only during learning. Here, k ∈ {1,… ,K} , where K is the number of model primitives
the lifelong learning agent has access to

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 6 of 38

Model primitives are suboptimal and make incorrect predictions about the next state.
Therefore we do not use them for planning or model-based learning of subpolicies directly.
In other words, the subpolicies do not receive any information about the dynamics from the
model primitives. The model primitives only help task decomposition, but do not provide any
information to each subpolicy as to how to solve the subtask. Instead, model primitives give
rise to useful functional decompositions and allow subpolicies to be learned in a model-free
way. This also means that the sample efficiency improvement achieved by MPHRL does actu-
ally stem from the use of model primitives, and not from the fact that the model primitives
encode domain knowledge about the optimal sub-behaviors. Model primitives are sub-opti-
mal, which makes the domain knowledge themselves inadequate for robust subpolicy learning.

3.1.2 Gating controller

Taking inspiration from the mixture-of-experts literature [45], where the output from multi-
ple experts can be combined using probabilistic gating functions, MPHRL decomposes the
solution for a given task into multiple “expert” subpolicies and a gating controller that can
compose them to solve the task. We want this switching behavior to be probabilistic and con-
tinuous, as opposed to one-hot hard selections, to avoid abrupt transitions. During learning,
we want this controller to help assign the reward signal to the correct blend of subpolicies to
ensure effective learning as well as decomposition.

Model primitives can give the gating controller access to the optimal mixture of subpoli-
cies to activate and use, but do not tell the subpolicies how to solve each subtask, since the
subpolicies are learned via model-free RL.

To begin, we observe that the diverse model primitives divide the world states into multiple
regions of specialization that have different transition dynamics. Local environments with dif-
ferent transition dynamics can require different sets of desirable behaviors to navigate effec-
tively. It is natural to reason that a separate subpolicy should be learned for each region of
specialization, so that these subpolicies will be less identical, therefore making hierarchical
lifelong RL more sample-efficient. This means that an effective task decomposition should
divide the world states precisely into these regions of specialization and learn a subpolicy for
each region. Therefore, our goal is to accurately categorize each world state st into the correct
region of the specialization.

We achieve this goal by computing P(Mk ∣ st, at, st+1) . This quantity denotes the ground
truth probability of the kth model primitive being the most accurate predictor of the current
transition (st, at, st+1) . This quantity also denotes the probability of st belonging to the kth
region of specialization. Here, to say that a model primitive specializes in the current state
is to say that out of all model primitives, this model primitive makes the most accurate pre-
diction of the current transition (st, at, st+1) . This is also analogous to stating that this model
primitive has the lowest inverse expected divergence between the ground truth next state dis-
tribution T(⋅ ∣ st, at) and its own predicted next state distribution T̂(⋅ ∣ st, at,Mk) . By accurately
computing P(Mk ∣ st, at, st+1) , the agent will be able to learn a dedicated subpolicy for each
region of specialization, decompose the task effectively, and finally achieve more sample-effi-
cient lifelong RL.

To compute P(Mk ∣ st, at, st+1) , we note that using Bayes’ rule:

because �k(at ∣ st) = �(at ∣ st,Mk).

(1)P(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st)𝜋k(at ∣ st)T̂(st+1 ∣ st, at,Mk)

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 7 of 38 28

Intuitively, P(Mk ∣ st, at, st+1) should be higher for the kth model primitive if it is more
accurate in predicting the current transition, or equivalently, if T̂(st+1 ∣ st, at,Mk) is higher.
Hence the inclusion of T̂(st+1 ∣ st, at,Mk) in calculating P(Mk ∣ st, at, st+1) , as given by the
Bayes’ rule.

However, the agent only has access to the current state st during execution. That is, the
agent’s gating controller needs to correctly identify which of the K regions of specializa-
tion the current state st belongs to, without being able to observe at and st+1 in advance.
Therefore, the agent needs to marginalize out st+1 and at such that the model choice only
depends on the current state st:

This is equivalent to:

Unfortunately, computing these integrals not only requires at and st+1 , but also uses expen-
sive Monte Carlo methods. However, we can approximate P(Mk ∣ st) using discriminative
learning [52].

Concretely, we parameterize the gating controller (GC) as a categorical distribution
P�(Mk ∣ st) = P(Mk ∣ st;�) and learn � by minimizing the conditional cross entropy loss
between �at∼�(⋅∣st),st+1∼T(⋅∣st ,at)

[
P(Mk ∣ st, at, st+1)

]
 and P�(Mk ∣ st) for all sampled transitions

(st, at, st+1) in a rollout:

where

This is equivalent to an implicit Monte Carlo integration to compute the marginal if
at ∼ �(⋅ ∣ st), st+1 ∼ T(⋅ ∣ st, at) . Although we cannot query �(at ∣ st) or T(st+1 ∣ st, at)
directly, st, at , and st+1 can be sampled according to their respective distributions while
we perform rollouts in the environment. Despite the introduced bias in our estimates, we
find Eq. 4 with Eq. 5 sufficient for effectively uncovering a task decomposition encoded in
the provided primitives that would later lead to sample efficiency improvement in lifelong
learning.

3.1.3 Subpolicy composition

Taking inspiration from mixture-of-experts, the gating controller composes the subpolicies
into a mixture policy:

See Fig. 2 for a concrete example.

(2)P(Mk ∣ st) = ∫
st+1∈S

∫
at∈A

P(Mk ∣ st, at, st+1)�(at ∣ st)T(st+1 ∣ st, at)datdst+1

(3)P(Mk ∣ st) = �at∼�(⋅∣st),st+1∼T(⋅∣st ,at)

[
P(Mk ∣ st, at, st+1)

]

(4)minimize
�

L
GC

(5)L
GC =

∑
st

∑
k

−

(∑
st+1

∑
at

P(Mk ∣ st, at, st+1)

)
× logP(Mk ∣ st;�)

(6)�(at ∣ st) =

K∑
k=1

P�(Mk ∣ st)�k(at ∣ st)

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 8 of 38

3.1.4 Decoupling cross entropy from action distribution

During a rollout, the agent samples at and st+1 as follows:

The �k from Eq. 1 gets coupled with this sampling distribution, making the target distri-
bution in Eq. 5 no longer stationary and the approximation process empirically difficult,
as demonstrated in Sect. 4.3.10. We alleviate this issue by approximating �k(at ∣ st) with
�(at ∣ st) , effectively treating the action distribution as a distribution independent of k and
as a result, making the target distribution stationary. This transforms Eq. 1 into:

An alternative view of this same mathematical relationship is given by:

As the gating controller becomes increasingly discriminative and accurate,
P(Mk ∣ st) ≈ P(Mk ∣ st, at) since the action at will not further inform the correct task
decomposition. As a result:

(7)at ∼ �(⋅ ∣ st)

(8)st+1 ∼ T(⋅ ∣ st, at)

(9)

P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st)𝜋k(at ∣ st)T̂(st+1 ∣ st, at,Mk)

≈ P(Mk ∣ st)𝜋(at ∣ st)T̂(st+1 ∣ st, at,Mk)

∝ P(Mk ∣ st)T̂(st+1 ∣ st, at,Mk)

(10)P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st, at)T̂(st+1 ∣ st, at,Mk)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

G
at

in
g

C
on

tro
lle

r

Fig. 2 Visualization of the policy composition using the Gating Controller’s output in a Maze environment,
where the amber four-legged robot is tasked to reach the green goal. The subpolicies �1,2,3,4 specialize in N,
S, W, E corridors respectively (Color figure online)

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 9 of 38 28

3.2 Learning

Since the focus of this work is on difficult continuous state and action problems, we mostly
concentrate on the issue of policy optimization and how it integrates with the gating con-
troller. The standard policy (SP) optimization objective is:

With baseline subtraction for variance reduction, this turns into [55]:

where Ât is an estimator of the advantage function [7].
In MPHRL, we directly use the mixture policy as defined by Eq. 6. The standard policy

gradients (PG) get weighted by the probability outputs of the gating controller, enforcing
the required specialization by factorizing into:

In practice, we use the Clipped PPO objective [56] instead to perform stable updates by
limiting the step size. This includes adding a baseline estimator (BL) parameterized by �
for value prediction and variance reduction. We optimize � according to the following loss:

We summarize this single-task learning algorithm in Algorithm 1, which results in a set of
decomposed subpolicies, ��1 ,… ,��K , and a gating controller P� that can modulate between
them to solve the task under consideration.

Lifelong learning: We have shown how MPHRL can decompose a single complex task
solution into different functional components. Complex tasks often share structure and
can be decomposed into similar sets of subtasks. Different tasks however require different
recomposition of similar subtasks. Therefore, we transfer the subpolicies to learn target
tasks, but not the gating controller or the baseline estimator. We summarize the lifelong
learning algorithm in Algorithm 2, with the global variable RESET set to true.

(11)
P̂(Mk ∣ st, at, st+1) ∝ P(Mk ∣ st, at)T̂(st+1 ∣ st, at,Mk)

≈ P(Mk ∣ st)T̂(st+1 ∣ st, at,Mk)

(12)maximize
�

L
SP = ��0,��

[��(at ∣ st)Q��
(st, at)]

(13)maximize
𝜃

L
PG = �𝜌0,𝜋𝜃

[𝜋𝜃(at ∣ st)Ât]

(14)ĝk = �𝜌0,𝜋𝜃k

[
P𝜙(Mk ∣ st)∇𝜃k

log𝜋𝜃k (at ∣ st)Ât

]

(15)L
BL = �

[‖‖‖V� − V��

‖‖‖
2
]

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 10 of 38

4 Experiments

Our experiments aim to answer two questions: (a) can model primitives ensure task decom-
position? (b) does such decomposition improve transfer for lifelong learning?

We evaluate our approach in two challenging domains: a MuJoCo [70] ant navigating
different mazes and a Stacker [64] arm picking up, placing and stacking different boxes.
In our experiments, we use subpolicies that have Gaussian action distributions, with mean
given by a multi-layer perceptron taking observations as input and standard deviations
given by a different set of parameters. MPHRL’s gating controller outputs a categorical
distribution and is parameterized by another multi-layer perceptron. We also use a separate
multi-layer perceptron for the baseline estimator. We use the standard clipped PPO [56]
algorithm as a baseline to compare against MPHRL. Transferring network weights empiri-
cally led to worse performance for standard clipped PPO. Hence, we re-initialize the base-
line PPO’s weights for every task. For fair comparison, we also shrink the hidden layer size
of MPHRL’s subpolicy networks from 64 to 16 (as detailed in Table 1). We conduct each
experiment across 5 different seeds and report performance means and standard deviations.
Error bars in all performance figures below represent the standard deviation from the mean.

The focus of this work is on understanding the usefulness of model primitives for task
decomposition and the resulting improvement in sample efficiency from transfer. To con-
duct perfectly controlled experiments with reliable and interpretable results, we first con-
duct experiments with model primitives created using the true next state provided by the
environment simulator, while later in Sect. 4.3.7 we present lifelong learning experiments
with non-hand-crafted, learned model primitives that exhibited similar sample efficiency
improvement. Concretely, we apply distinct multivariate Gaussian noise models with
covariance �� to the true next state. We then sample from this distribution to obtain the
mean of the probability distribution of a model primitive’s next state prediction, using � as
its covariance. Here, � is the noise scaling factor that distinguishes model primitives, while
� refers to the empirical covariance of the sampled next states:

(16)� ∼ N(st+1, �k�)

(17)T̂(st+1 ∣ st, at,Mk) = N(𝜇,𝛴)

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 11 of 38 28

Table 1 Hyperparameters: MPHRL and baseline PPO

aSingle task refers to L-Maze and D-Maze; source and target tasks refer to the first task and all subsequent
tasks in a lifelong learning taskset, respectively
bBaseline network hyperparameters apply to both MPHRL and baseline PPO; model primitive networks are
for experiments with learned model primitives only
cThe baseline PPO has no subpolicies, so the subpolicy network is the policy network
dBaseline and subpolicy networks only

Category Hyper-parameter Value

Number of model primitives: Maze Single-task: L-Maze 2
Single-task: D-Maze 4
Lifelong learning: 10-Maze 4
Ablation: H-V 2
Ablation: velocity 2
Ablation: extra 5

Number of model primitives: 8-Pickup&Place lifelong learning: 8-Pickup&Place 12
Ablation: Box 2
Ablation: Action 6

Gating controller: network Hidden layers 2
Hidden dimension 64

Gating controller: base learning rate Single/source Taska (10-Maze) 1 × 10−3

Single/source task (8-Pickup&Place) 3 × 10−2

Target tasks 3 × 10−3

Gating controller: number of epoches/batch Single/source task 1
Target tasks 10

Baseline and model primitive networksb Hidden layers 2
Hidden dimension 64
Base learning rate 3 × 10−4

Subpolicy networksc Hidden layers 2
Hidden dimension (MPHRL) 16
Hidden dimension (PPO) 64
Base learning rate 3 × 10−4

Optimization Number of actors (10-Maze) 16
Number of actors (8-Pickup&Place) 24
Batch size/actor (10-Maze) 2048
Batch size/actor (8-Pickup&Place) 1536
Max. timesteps/task 3 × 107

Minibatch size/actor 256
Number of epoches/batchd 10
Discount (�) 0.99
GAE parameter (�) 0.95
PPO clipping coeff. (�) 0.2
Gradient clipping None
VF coeff. (c

1
) 1.0

Entropy coeff. (c
2
) 0

Optimizer Adam

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 12 of 38

Using � as opposed to a constant covariance is essential for controlled experiments
because different elements of the observation space have different orders of magnitude.
Sampling � from a distribution effectively adds random bias to the model primitive’s next
state probability distribution.

Later on we relax these controlled experimental conditions and show how these model
primitives can be trained in practice and how our framework can leverage such learned
model primitives for task decomposition to achieve similar lifelong learning performance
and sample efficiency improvement.

Our implementation is available at http://githu b.com/sisl/MPHRL , and the details for
MPHRL and baseline PPO hyperparameters are presented in Table 1. Agent videos are
available at 10-Maze Playl ist URL and 8-Picku p&Place Playl ist URL.

4.1 Single‑task learning

First, we focus on two single-task learning experiments where MPHRL learns a number
of interpretable subpolicies to solve a single task. Both the L-Maze and D-Maze (Fig. 3a)
tasks require the ant to learn to walk and reach the green goal within a finite horizon. For
both tasks, both the goal and the initial ant locations are fixed.

4.1.1 Observation space

The observation space for both the L-Maze and D-Maze includes the standard joint angles
and velocities, lidar information that tracks distances from walls on each side, and the
Manhattan distance to the goal.

L-Maze D-Maze

Tasks

0

5

10

15

20

25

30

T
im

es
te
ps

(×
10

6)

MPHRL
PPO

(a) L-Maze (top) and D-Maze (bottom) (b) Performance

Fig. 3 Single-task learning

http://github.com/sisl/MPHRL
https://www.youtube.com/playlist?list=PLMcHQjX71xJ1bhlr-5sZnMqTQ_7kMoork
https://www.youtube.com/playlist?list=PLMcHQjX71xJ0RT6foK2JsDxPn-CVNdtPR

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 13 of 38 28

4.1.2 Full details of reward structure

The reward at any given timesteps is composed of the forward reward, the control cost and
the contact cost:

The forward reward is proportional to the difference in the (x, y) Euclidean distance to the
next subgoal between the current and the previous timestep:

where

The subgoals are located at the end of each sub-corridor.
The contact and control costs remain the same as the original OpenAI Gym [10]:

.

4.1.3 Model primitives

For the L-Maze, the agent has access to two model primitives, one specializing in the hori-
zontal (E, W) corridor and the other specializing in the vertical (N, S) corridor of the maze.
Similarly for the D-Maze, the agent has access to four model primitives, one specializing in
each N, S, E, W corridor of the maze. In their specialized corridors, the noise scaling factor
� = 0 . Outside of their regions of specialization, � = 0.5 . Note that we set � = 0 purely for
the purpose of analysis.

4.1.4 Results and analysis

Section 4.3.7 shows that MPHRL is robust to learned, non-hand-crafted model primitives.
Figure 3b shows the experimental results on these environments. Notice that using model
primitives can increase the sample complexity on a single task. This is expected, since we
are forcing the agent to decompose the solution for potential lifelong learning, which could
be unnecessary for a single task. However, we will observe in the following section that
this decomposition can lead to remarkable performance improvements in sequential knowl-
edge transfer during lifelong learning.

4.2 Lifelong learning

To evaluate our framework’s performance at lifelong learning, we introduce two tasksets:
10-Maze and 8-Pickup&Place. In our experiments, we report number of timesteps to reach
target average success rate of 80% for 10-Maze tasks and 75% for 8-Pickup&Place tasks.

(18)rt = r
forward

t − ccontrol
t

− ccontact
t

(19)r
forward

t = 50 × (dt−1 − dt)

(20)dt =
‖‖‖[x

ant
t

− x
subgoal

t , yant
t

− y
subgoal

t]
‖‖‖2

(21)ccontrol
t

= 0.5 × ‖‖at‖‖2

(22)ccontact
t

= 0.005 × ‖external_contact_forces‖2

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 14 of 38

This is computed as the moving average of the percentages of success across 10 trailing
iterations. During each iteration, each actor generates a complete trajectory that either suc-
ceeds or fails, and the percentage of success for this iteration is then computed by averag-
ing across all actors.

4.2.1 10‑Maze

To evaluate MPHRL’s performance in lifelong learning, we generate a family of 10 random
mazes for the MuJoCo [70] Ant environment, referred to as the 10-Maze lifelong learn-
ing taskset (Fig. 4) hereafter. The goal, the observation space, the Gaussian noise models,
and the model primitives remain the same as in the D-Maze environment in Sect. 4.1. The
full reward structure is also the same as “D-Maze”, as detailed in Sect. 4.1.2. Each task is
considered successful when the ant is within a very small distance to the green goal. Oth-
erwise, the task is considered a failure. The agent has a maximum of 3 × 107 timesteps to
reach 80% success rate in each of the 10 tasks. As shown in Fig. 5 and Table 2, MPHRL
requires nearly double the number of timesteps to learn the useful, decomposed subpoli-
cies (Fig. 6) in the first task. However, this cost gets amortized over the entire taskset, with
MPHRL taking half the total number of timesteps of the baseline PPO, exhibiting strong
subpolicy transfer.

4.2.2 8‑Pickup&Place

We modify the Stacker task [64] to create the 8-Pickup&Place lifelong learning taskset. As
shown in Fig. 7, a robotic arm is tasked to bring 2 boxes to their respective goal locations
in a certain order. Marked by colors red, green, and blue, the goal locations reside within
two short walls forming a “stack”.

Each of the 8 tasks has a maximum of 3 goal locations. The observation space of the
agent includes joint angles and velocities, box and goal locations, the boxes’ relative
distances to each other, and the current stage of the task encoded as one-hot vectors. The
goal locations, the starting position and orientation of the robot, and the locations of the
boxes are all initialized randomly for every episode. Furthermore, in order to allow the

Fig. 4 The 10-Maze lifelong learning taskset

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 15 of 38 28

baseline PPO to solve the taskset more easily, episodes in 8-Pickup&Place tasks can
sometimes be initialized to the state where some boxes are already in their goal loca-
tions. The probability of such initialization is constant with respect to the remaining
goal locations to solve. For example, in Task (e) in Fig. 7, with 1

3
 probability an episode

is initialized with no boxes already in their goal locations. With another 1
3
 probability,

the episode is initialized with the black box already in the left stack. With the remaining
1

3
 probability, the episode is initialized with both the black and white boxes in the left

stack (the white box will be on top of the black box), in which case all the robot has to

1 2 3 4 5 6 7 8 9 10

To
ta
l

Tasks

0

20

40

60

80

100

T
im

es
te
ps

(×
10

6)
MPHRL
PPO

Fig. 5 10-Maze: MPHRL versus PPO for lifelong learning

Move East Move North Move West Move South

Fig. 6 4 decomposed subpolicies from the 10-Maze lifelong learning taskset

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 16 of 38

Ta
bl

e
2

 10
-M

az
e:

 M
PH

R
L

ve
rs

us
 P

PO
 fo

r l
ife

lo
ng

 le
ar

ni
ng

A
lg

or
ith

m
Ti

m
es

te
ps

 to
 re

ac
h
8
0
%

 a
ve

ra
ge

 su
cc

es
s r

at
e

(×
1
0
6
)

1
2

3
4

5
6

7
8

9
10

To
ta

l

M
PH

R
L

1
7
.9
±
2
.3

2
.9
±
1
.9

2
.9
±
1
.4

4
.8
±
1
.7

1
.8
±
1
.3

2
.4
±
1
.6

2
.0
±
2
.3

2
.9
±
2
.4

2
.9
±
0
.7

1
.8
±
1
.3

4
2
.2
±
6
.9

PP
O

9
.8
±
1
.5

7
.7
±
1
.2

1
0
.9
±
1
.2

7
.7
±
0
.5

8
.0
±
0
.8

8
.0
±
0
.8

8
.4
±
0
.6

9
.6
±
1
.0

1
0
.0
±
1
.3

8
.2
±
0
.8

8
8
.2
±
2
.2

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 17 of 38 28

do to complete the task is to move the white box from the left stack to the right stack.
When all boxes are in their correct goal locations within a very small distance, the epi-
sode is considered successful. Otherwise, the episode is considered a failure.

The reward at any timestep is calculated as the difference in distance to the next task
subgoal:

where

In Eq. 24, f1 refers to the left finger tip of the agent’s gripper, f2 refers to the right finger tip
of the agent’s gripper, and � refers to the [x, y] 2D position of the grasp, box, target, a point
above the box, or a point above the target.

(23)rt = dt−1 − dt

(24)

dt =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

10 ×
����grasp − �above_box

���2 if subgoal is reach above

20 ×
����grasp − �box

���2 if subgoal is lower to

50 ×
����f1 − �f2

���2 − 5 ×
����box − �target

���2 if subgoal is grasp

20 × �ygrasp − yabove_target� + ����f1 − �f2
���2 if subgoal is pick up

10 ×
����grasp − �above_target

���2 +
����f1 − �f2

���2 if subgoal is carry

5 − 20 ×
����f1 − �f2

���2 − 2 ×
����grasp − �box

���2 if subgoal is drop

(a)
Black Box → T1
White Box → T2

(b)
White Box → T1
Black Box → T2
Black Box → T3

(c)
White Box → T1
White Box → T2

(d)
Black Box → T1
Black Box → T2
White Box → T3

(e)
Black Box → T1
White Box → T2
White Box → T3

(f)
Black Box → T1
Black Box → T2
Black Box → T3

(g)
White Box → T1
Black Box → T2

(h)
White Box → T1
Black Box → T2
Black Box → T3

Fig. 7 The 8-Pickup&Place lifelong learning taskset. T1, T2, and T3 refer to Target Goal Location 1 (red),
Target Goal Location 2 (green), and Target Goal Location 3 (blue) (Color figure online)

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 18 of 38

The agent has access to six model primitives for each box that specialize in approach-
ing, lowering to, grasping, picking up, carrying, and dropping a certain box respectively.
Similar to 10-Maze, model primitives have � of 0 within their specialized stages and � of
0.5 otherwise, purely for the purpose of analysis. Figure 8 and Table 3 show MPHRL’s
experimental performance by learning twelve useful subpolicies (Fig. 9) for this taskset.
We notice again the strong transfer performance due to the decomposition forced by the
model primitives. Note that this taskset is much more complex than 10-Maze such that
MPHRL even accelerates the learning of the first task (4.0 ± 0.4 vs. 8.3 ± 4.2).

4.3 Ablation

We conduct ablation experiments to answer the following questions:

1. How much gain in sample efficiency is achieved by transferring subpolicies?
2. Can MPHRL learn good task decomposition even when the model primitives are quite

noisy or when the source task does not cover all “cases” (partial decomposition)?
3. When does MPHRL fail to decompose the solution?
4. What kind of diversity in the model primitives is essential for performance?
5. When does MPHRL lead to negative transfer [23, 53]?

1 2 3 4 5 6 7 8

To
ta
l

Tasks

0

20

40

60

80

100

T
im

es
te
ps

(×
10

6)

MPHRL
PPO

Fig. 8 8-Pickup&Place: MPHRL versus PPO for lifelong learning

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 19 of 38 28

6. Is MPHRL’s gain in sample efficiency a result of hand-crafted model primitives and
how does it perform with non-hand-crafted, learned model primitives?

4.3.1 Model noise

MPHRL has the ability to decompose the solution even given bad model primitives. Since
the learning is done model-free, these suboptimal model primitives should not strongly
affect the learning performance so long as they remain sufficiently distinct. To investigate
the limitations to this claim, we conduct five 10-Maze experiments using various sets of
noisy model primitives. Below, the first value corresponds to the noise scaling factor �
within their individual regions of specialization, while the second value corresponds to �
outside of their regions of specialization.

(a) 0.4 and 0.5: good model primitives with limited distinction
(b) 0.5 and 1.0: good model primitives with reasonable distinction
(c) 5.0 and 10.0: bad model primitives with reasonable distinction
(d) 9.0 and 10.0: bad model primitives with limited distinction
(e) 0.5 and 0.5: good model primitives with no distinction

As shown in Fig. 10 and Table 4, (a), (b), (c), and (d) exhibit limited degradation in
10-Maze performance and still outperform baseline PPO (88.2 ± 2.2 as exhibited in
Table 2). On the other hand, in (e) MPHRL took 22.0 ± 4.6 million timesteps to solve the

Approach
Black Box

Lower to
Black Box

Grasp
Black Box

Pick up
Black Box

Carry
Black Box

Drop
Black Box

Approach
White Box

Lower to
White Box

Grasp
White Box

Pick up
White Box

Carry
White Box

Drop
White Box

Fig. 9 12 decomposed subpolicies from the 8-Pickup&Place lifelong learning taskset

Table 3 8-Pickup&Place: MPHRL versus PPO for lifelong learning

Algo-
rithm

Timesteps to reach 75% average success rate (×106)

1 2 3 4 5 6 7 8 Total

MPHRL 4.0 ± 0.4 2.4 ± 0.3 1.6 ± 0.4 2.3 ± 1.0 2.7 ± 3.8 1.6 ± 1.0 6.8 ± 4.1 6.3 ± 5.8 27.6 ± 12.0

PPO 8.3 ± 4.2 10.3 ± 9.9 2.5 ± 0.6 12.2 ± 10.08.1 ± 4.9 2.6 ± 0.3 7.6 ± 4.0 7.7 ± 2.4 59.2 ± 22.9

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 20 of 38

first task and 2.8 ± 1.6 million timesteps to solve the second task, but failed to solve the
third task within 30 million timesteps. This is because the model primitives are identical
and provide no information about task decomposition. Figure 11 and Table 5 show similar
results for 8-Pickup&Place, where bad, noisier model primitives (5 and 20) actually out-
perform good, less noisy (0 and 0.5) model primitives mainly due to a larger distinction
among the model primitives. In summary, MPHRL is robust against bad model primitives
so long as they maintain some relative distinction.

4.3.2 Overlapping model primitives

We next test the condition when there is substantial overlap in regions of specialization
between different model primitives. For the 10-Maze taskset, the most plausible region
for this confusion is at the corners. In this experiment, within each corner, the two model
primitives whose specialized corridors share the corner have � = 0 while the other two
have � = 0.5 . Again, we set � = 0 purely for analysis purpose, and Sect. 4.3.7 shows that
MPHRL is robost to learned, non-hand-crafted model primitives. Figure 12 and Table 6
show the performance for model primitive confusion at the corners against the standard set
of model primitives with no confusion. We observe that despite some performance degra-
dation due to overlapping regions of specialization between the model primitives, MPHRL
continues to outperform the PPO baseline (53.8 ± 10.6 vs. 88.2 ± 2.2).

1 2 3 4 5 6 7 8 9 10

To
ta
l

Tasks

0

10

20

30

40

50

60

70
T
im

es
te
ps

(×
10

6)

Noise = 0.4 & 0.5
Noise = 0.5 & 1.0
Noise = 5.0 & 10.0
Noise = 9.0 & 10.0

Fig. 10 10-Maze: effect of model noise on MPHRL sample complexity

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 21 of 38 28

Ta
bl

e
4

 10
-M

az
e:

 e
ffe

ct
 o

f m
od

el
 n

oi
se

 o
n

M
PH

R
L

sa
m

pl
e

co
m

pl
ex

ity

N
oi

se
Ti

m
es

te
ps

 to
 re

ac
h
8
0
%

 av
er

ag
e

su
cc

es
s r

at
e

(×
1
0
6
)

T
F

1
2

3
4

5
6

7
8

9
10

To
ta

l

0.
4

0.
5

1
5
.5
±
3
.9

1
.9
±
1
.4

4
.2
±
2
.3

4
.1
±
1
.3

2
.7
±
2
.2

2
.5
±
1
.7

1
.0
±
0
.9

3
.5
±
1
.6

2
.9
±
1
.7

3
.1
±
1
.6

4
1
.6
±
4
.7

0.
5

1.
0

1
6
.1
±
1
.4

2
.9
±
1
.6

2
.5
±
0
.7

6
.1
±
2
.0

1
.3
±
1
.0

4
.3
±
3
.3

1
.5
±
2
.0

4
.6
±
3
.8

2
.8
±
3
.1

5
.4
±
2
.2

4
7
.4
±
8
.4

5
10

1
5
.7
±
2
.1

2
.3
±
1
.7

2
.7
±
1
.7

4
.8
±
2
.7

2
.8
±
2
.2

6
.6
±
5
.1

2
.5
±
3
.4

5
.9
±
3
.1

2
.7
±
1
.7

3
.0
±
1
.7

4
9
.0
±
1
2
.3

9
10

1
9
.0
±
1
.8

2
.2
±
1
.0

5
.2
±
2
.6

7
.6
±
3
.4

2
.8
±
2
.6

3
.1
±
3
.0

0
.7
±
0
.8

1
.5
±
0
.9

4
.7
±
4
.5

7
.5
±
5
.3

5
4
.3
±
1
8
.0

0.
5

0.
5

2
2
.0
±
4
.6

2
.8
±
1
.6

N
/A

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 22 of 38

4.3.3 Model diversity

Having tested MPHRL against model primitive noises and corner confusion, we experi-
mented with sets of model primitives that are less desirable for 10-Maze:

(a) Extra: a fifth model primitive that specializes in states where the ant is moving hori-
zontally; this is undesirable because this extra model primitive is redundant and can
overlap with both the E and W model primitives.

(b) H-V: 2 model primitives specializing in horizontal (E, W) and vertical (N, S) corridors
respectively; this is undesirable because such under-specification of the regions of spe-

Table 5 8-Pickup&Place: effect of model noise on MPHRL sample complexity

Noise Timesteps to reach 75% average success rate (×106)

T F 1 2 3 4 5 6 7 8 Total

0 0.5 4.0 ± 0.4 2.4 ± 0.3 1.6 ± 0.4 2.3 ± 1.0 2.7 ± 3.8 1.6 ± 1.0 6.8 ± 4.1 6.3 ± 5.8 27.6 ± 12.0

5 20 4.5 ± 0.9 1.8 ± 0.2 1.7 ± 0.4 1.5 ± 0.6 1.0 ± 0.5 1.1 ± 0.5 2.2 ± 2.3 2.0 ± 2.3 15.8 ± 5.5
1 2 3 4 5 6 7 8

To
ta
l

Tasks

0

5

10

15

20

25

30

35

40

T
im

es
te
ps

(×
10

6)

Noise = 0.0 & 0.5
Noise = 5 & 20

Fig. 11 8-Pickup&Place: effect of model noise on MPHRL sample complexity

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 23 of 38 28

cialization forces the ant agent to learn a single subpolicy for moving in both east and
west corridors, and another subpolicy for moving in both north and south corridors.

(c) Velocity: 2 model primitives specializing in states where the ant agent is moving hori-
zontally and vertically respectively; this is undesirable because such under-specification
of the regions of specialization forces the ant agent to learn a single subpolicy for mov-
ing both east and west, and another subpolicy for moving both north and south.

and for 8-Pickup&Place:

(a) Box: 2 model primitives for all maneuvers on 2 boxes; this is undesirable because such
under-specification of the regions of specialization forces the robot to learn one single
subpolicy for all six different maneuvers on each box.

(b) Action: 6 model primitives for 6 maneuvers performed on boxes: approach, lower to,
grasp, pick up, carry, and drop; this is undesirable because such under-specification
of the regions of specialization forces the robot to learn one single subpolicy for each
type of maneuver on all boxes.

Table 7 shows MPHRL is susceptible to some performance degradation given undesira-
ble sets of model primitives. However, MPHRL still outperforms baseline PPO (50.7 ± 4.3

1 2 3 4 5 6 7 8 9 10

To
ta
l

Tasks

0

10

20

30

40

50

60

70

T
im

es
te
ps

(×
10

6)
No confusion
Confusion

Fig. 12 10-Maze: Effect of model primitive confusion at the corners

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 24 of 38

Ta
bl

e
6

 10
-M

az
e:

 e
ffe

ct
 o

f m
od

el
 p

rim
iti

ve
 c

on
fu

si
on

 a
t t

he
 c

or
ne

rs

N
oi

se
Ti

m
es

te
ps

 to
 re

ac
h
8
0
%

 a
ve

ra
ge

 su
cc

es
s r

at
e

(×
1
0
6
)

T
F

C
on

fu
si

on
1

2
3

4
5

6
7

8
9

10
To

ta
l

0
0.

5
Ye

s
1
7
.7
±
6
.0

2
.4
±
1
.5

4
.8
±
3
.5

4
.8
±
1
.5

1
.8
±
1
.7

4
.6
±
1
.6

2
.7
±
2
.6

4
.3
±
4
.0

4
.1
±
3
.1

6
.8
±
2
.6

5
3
.8
±
1
0
.6

0
0.

5
N

o
1
7
.9
±
2
.3

2
.9
±
1
.9

2
.9
±
1
.4

4
.8
±
1
.7

1
.8
±
1
.3

2
.4
±
1
.6

2
.0
±
2
.3

2
.9
±
2
.4

2
.9
±
0
.7

1
.8
±
1
.3

4
2
.2
±
6
.9

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 25 of 38 28

Ta
bl

e
7

 E
ffe

ct
 o

f s
ub

op
tim

al
 m

od
el

 p
rim

iti
ve

 ty
pe

s (
N

/A
 in

di
ca

te
s f

ai
lu

re
 to

 so
lv

e
th

e
ta

sk
 w

ith
in

 3
×
1
0
7
 ti

m
es

te
ps

)

a
M

od
el

 P
rim

iti
ve

s
b
8-

Pi
ck

up
&

Pl
ac

e

Ti
m

es
te

ps
 to

 re
ac

h
ta

rg
et

 av
er

ag
e

su
cc

es
s r

at
e

(×
1
0
6
)

Ta
sk

se
t

M
Ps

a
1

2
3

4
5

10
-M

az
e

Ex
tra

2
1
.8
±
1
.5

4
.3
±
0
.8

3
.5
±
0
.9

5
.2
±
1
.2

0
.7
±
0
.5

10
-M

az
e

H
-V

2
8
.1
±
4
.2

2
.4
±
0
.6

1
8
.9
±
1
1
.0

2
8
.8
±
2
.8

N
/A

10
-M

az
e

Ve
lo

ci
ty

1
4
.7
±
2
.4

1
.4
±
1
.2

1
7
.9
±
1
1
.2

2
0
.5
±
1
3
.2

N
/A

8-
P&

Pb
A

ct
io

n
5
.1
±
0
.6

4
.8
±
1
.8

1
6
.8
±
1
2
.6

2
6
.9
±
6
.9

N
/A

8-
P&

P
B

ox
1
8
.6
±
1
0
.9

N
/A

Ti
m

es
te

ps
 to

 re
ac

h
ta

rg
et

 av
er

ag
e

su
cc

es
s r

at
e

(×
1
0
6
)

Ta
sk

se
t

M
Ps

6
7

8
9

10
To

ta
l

10
- M

az
e

Ex
tra

3
.6
±
1
.8

1
.2
±
1
.1

1
.5
±
0
.9

3
.1
±
0
.7

5
.8
±
3
.3

5
0
.7
±
4
.3

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 26 of 38

vs. 88.2 ± 2.2) when given an extra, undesirable model primitive. This indicates that for
best transfer, the model primitives need to approximately capture the structure present in
the taskset and avoid under-specification of regions of specialization.

4.3.4 Negative transfer and catastrophic forgetting

Lifelong learning agents with neural network function approximators face the problem of
negative transfer and catastrophic forgetting. Negative transfer implies that the inductive
bias learned by the agent on a subset of tasks during lifelong learning makes it worse at the
full set of tasks. Ideally, the agent should find the solution quickly if the task has already
been seen. More generally, given two sets of tasks T and T ′ such that T ⊂ T ′ , after being
exposed to T ′ the agent should perform no worse (indicating no catastrophic forgetting),
and preferably better (indicating positive transfer), than had it been exposed to T only.

In this 10-Maze experiment, we restore the subpolicy checkpoints after solving the
10 tasks and evaluate MPHRL’s learning performance on the first 9 tasks. Similarly, we
restore the subpolicy checkpoints after solving the first 6 tasks and evaluate MPHRL’s per-
formance on the first 5 tasks. The gating controller is reset for each task as in earlier experi-
ments. We summarize the results in Table 8. MPHRL agents trained sequentially on 6 or
10 tasks quickly relearn the required behavior for all previously seen tasks, implying no
catastrophic forgetting and that negative transfer is very limited with this approach. Moreo-
ver, if we compare the 10-task result to the 6-task result, we see remarkable improvements
at transfer. This shows that MPHRL’s robustness against catastrophic forgetting and nega-
tive transfer can increase with the number of seen tasks.

4.3.5 Oracle gating controller

One might suspect that all gains in sample efficiency come from hand-crafted model primi-
tives because they allow the agent to learn a perfect gating controller. However, Fig. 13
shows that when the gating controller is already perfectly known, the reward curves for a
10-Maze experiment plateau at around 200, much lower than the required reward threshold
of 800. As a result, this setup is unable to solve any 10-Maze tasks.

Since the 10-Maze taskset is composed of sequential subtasks, only one subpolicy will
be learned in the first corridor when the gating controller is perfect. When transitioning to
the second corridor, the second subpolicy needs to be learned from scratch, making the
ant’s subsequent rewards negative. This discourages the first subpolicy from entering the
second corridor and activating the second subpolicy. Eventually, the ant stops moving for-
ward close to the intersection between the first two corridors due to risk aversion.

More specifically, a random subpolicy could easily flip the ant agent upside down,
after which the agent will no longer be able to move forward. As a result, the for-
ward reward remains close to zero, while the control and contact costs continue to

Table 8 10-Maze: effect of experience

Tasks Timesteps to reach 80% average success rate (×106)

1 2 3 4 5 6 7 8 9

10 0.6 ± 0.1 0.4 ± 0.0 0.6 ± 0.0 0.5 ± 0.1 0.4 ± 0.0 2.3 ± 0.7 0.7 ± 0.2 2.6 ± 0.3 0.7 ± 0.1

6 3.1 ± 0.4 2.0 ± 0.2 3.5 ± 0.7 2.2 ± 0.7 1.8 ± 0.3

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 27 of 38 28

accumulate until episode termination. Indeed, if the two costs are eliminated, perhaps
the first subpolicy will not prevent the agent from entering the second corridor and
then the second subpolicy will train. Nevertheless, it will still take time for the each
subsequent subpolicy to learn to prevent the ant from going upside down. In contrast,
MPHRL’s natural curriculum for gradual specialization allows multiple subpolicies
to learn the basic skills for survival (not flipping the ant upside down) initially and
simultaneously.

Here, we are providing a common issue found when using an oracle gating con-
troller, where MPHRL’s natural curriculum can help resolve. This issue is common in
multi-stage tasks, particularly when the reward structure results in a random subpolicy
in a subtask generating a negative cumulative reward. In this scenario, the subpolicy
in the previous subtask actually learns to prevent the agent from entering the next sub-
task, causing globally suboptimal behavior.

4.3.6 Partial decomposition

To confirm that the ordering of tasks does not significantly affect MPHRL’s perfor-
mance, we modified the 10-Maze taskset to create the 10-Maze-v2 taskset (Fig. 14), in
which the source task does not allow for complete decomposition into all useful sub-
policies for the subsequent target tasks (there are no west corridors in the source task).
The success rate threshold is at 70% . Again, we observe large improvement in sam-
ple efficiency over standard PPO (Fig. 15 and Table 9), demonstrating that MPHRL is
robust against partial decomposition during lifelong learning.

Fig. 13 Average rewards of
MPHRL when using an oracle
gating controller. The reward
threshold for reaching 80%
success rate for the first task is
approximately 800

0 200 400 600 800

Epochs (× 2048 timesteps)

−800

−600

−400

−200

0

A
vg
.
re
w
ar
ds

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 28 of 38

4.3.7 Learned model primitives

So far, this article has primarily focused on evaluating suboptimal world models for
task decomposition in perfectly controlled experiments using hand-crafted model primi-
tives. Now, we demonstrate that MPHRL is robust to learned, non-hand-crafted model

Fig. 14 The 10-Maze-v2 lifelong learning taskset

1 2 3 4 5 6 7 8 9 10

To
ta
l

Tasks

0

20

40

60

80

100

120

T
im

es
te
ps

(×
10

6)

Learned Model Primitives
Hand-crafted Model Primitives
Baseline PPO

Fig. 15 10-Maze-v2: performance under partial decomposition and using learned model primitives

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 29 of 38 28

Ta
bl

e
9

 10
-M

az
e-

v2
: p

er
fo

rm
an

ce
 u

nd
er

 p
ar

tia
l d

ec
om

po
si

tio
n

an
d

us
in

g
le

ar
ne

d
m

od
el

 p
rim

iti
ve

s

a
M

PH
R

L
w

ith
 h

an
d-

cr
af

te
d

m
od

el
 p

rim
iti

ve
s

b
M

PH
R

L
w

ith
 le

ar
ne

d
m

od
el

 p
rim

iti
ve

s

A
lg

or
ith

m
Ti

m
es

te
ps

 to
 re

ac
h
7
0
%

 a
ve

ra
ge

 su
cc

es
s r

at
e

(×
1
0
6
)

1
2

3
4

5
6

7
8

9
10

To
ta

l

M
PH

R
L-

C
a

1
4
.9
±
1
.4

1
.1
±
0
.5

5
.4
±
1
.2

4
.4
±
0
.6

1
.1
±
0
.4

2
.3
±
1
.3

2
.2
±
1
.7

1
.4
±
1
.0

1
.5
±
0
.9

1
.4
±
1
.1

3
5
.6
±
2
.8

M
PH

R
L-

L
b

1
4
.0
±
1
.5

2
.5
±
1
.5

6
.3
±
1
.9

7
.3
±
2
.1

1
.9
±
1
.4

9
.3
±
3
.4

3
.3
±
1
.6

0
.7
±
0
.5

5
.1
±
3
.7

4
.7
±
8
.6

5
5
.2
±
1
1
.0

PP
O

1
2
.6
±
1
.7

1
1
.8
±
0
.6

9
.4
±
0
.9

1
0
.6
±
1
.4

8
.1
±
0
.7

7
.9
±
0
.5

1
2
.2
±
2
.3

1
2
.6
±
2
.8

1
2
.4
±
2
.1

8
.7
±
0
.9

1
0
6
.1
±
8
.1

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 30 of 38

primitives. Here, we show one way to learn each model primitive for 10-Maze-v2 using
three simple corridor environments demonstrated in Fig. 16. Concretely, we parameterize
each model primitive using a multivariate Gaussian distribution. We learn the mean of this
distribution via a multi-layer perceptron using a weighted mean square error in dynamics
prediction as the training loss. The standard deviation is still derived from the empirical
covariance � as described earlier. In this manner, model primitives can be learned straight-
forwardly via supervised learning. Even though the diversity in these learned model primi-
tives is much more difficult to quantify and control than hand-crafted model primitives,
their sample efficiency still substantially outperforms standard PPO and slightly underper-
forms hand-crafted model primitives with 0 and 0.5 model noises (Fig. 15 and Table 9).

Each model primitive took 3.3 × 106 timesteps to train, totaling 13.2 × 106 timesteps.
Adding this cost to the 55.2 × 106 mean sample complexity of MPHRL using learned
model primitives gives a total of 68.4 ± 11.0 × 106 timesteps, which still significantly out-
performs 106.1 ± 8.1 timesteps in the case of the baseline. In addition, the cost of learning
model primitives is only a one-time cost (as opposed to a per-task cost) that gets amortized
more significantly as the number of tasks increases, and here we have only used 10 tasks
per lifelong learning experiment.

4.3.8 Gating controller transfer

Since the task decomposition varies across tasks, MPHRL transfers the subpolicies but not
the gating controller during target task learning. To explore factors that could lead to nega-
tive transfer, we tested a version of MPHRL that does not re-initialize but rather transfers
the gating controller in target tasks, as shown in Table 10 and Fig. 17 (in Gating and Sub-
policies Transfer). Although the mean sample efficiency remains stable, its standard devia-
tion increases, indicating volatility due to both positive and negative transfer. To avoid such
volatility in transfer performance, MPHRL re-initializes the gating controller during target
task learning.

4.3.9 Subpolicy transfer

To measure how much gain in sample efficiency MPHRL has achieved by transferring sub-
policies alone, we conducted a 10-Maze experiment by re-initializing all network weights
for every new task, essentially disabling any transfer. As shown in Table 10 and Fig. 17
(in No Gating or Subpolicies Transfer), sample complexity more than quintuples when

Fig. 16 Three simple corridor environments for learning the “N” model primitive

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 31 of 38 28

subpolicies are re-initialized. This demonstrates the significant sample efficiency improve-
ment MPHRL achieves by transferring subpolicies.

4.3.10 Coupling between cross entropy and action distribution

To validate using P̂(Mk ∣ st, at, st+1) in Eq. 9 as opposed to P(Mk ∣ st, at, st+1) from Eq. 1,
we tested MPHRL with Eq. 1 on 10-Maze. All runs with different seeds failed to solve
the first 5 tasks (Table 11). As the gating controller is re-initialized during transfer, most
actions were chosen incorrectly. The gating controller is thus presented with the incorrect
cross entropy target, which worsens the action distribution. The resulting vicious cycle
forces the gating controller to converge to a suboptimal equilibrium against the incorrect
target. Therefore, MPHRL adopts Eq. 9 rather than Eq. 1 to learn task decomposition.

5 Conclusions

In this paper, we showed how imperfect or even bad world models, i.e. model primi-
tives, can be used to decompose a complex task into simpler subtasks. We introduced a
framework that uses these model primitives to learn piecewise functional decompositions
of solutions to complex tasks. The learned decomposed subpolicies can then be used to

2 3 4 5 6 7 8 9 10

To
ta
l

Tasks

0

20

40

60

80

100

120

140
T
im

es
te
ps

(×
10

6)

Gating and Subpolicies Transfer
Subpolicies Transfer but No Gating Transfer
No Gating or Subpolicies Transfer

Fig. 17 10-Maze: gain in sample efficiency achieved by MPHRL’s gating controller and subpolicies (target
tasks performance only)

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 32 of 38

Ta
bl

e
10

10

-M
az

e:
 g

ai
n

in
 sa

m
pl

e
effi

ci
en

cy
 a

ch
ie

ve
d

by
 M

PH
R

L’
s g

at
in

g
co

nt
ro

lle
r a

nd
 su

bp
ol

ic
ie

s (
ta

rg
et

 ta
sk

s p
er

fo
rm

an
ce

 o
nl

y)

a
G

at
in

g
co

nt
ro

lle
r

Tr
an

sf
er

Ti
m

es
te

ps
 to

 re
ac

h
8
0
%

 a
ve

ra
ge

 su
cc

es
s r

at
e

(×
1
0
6
)

G
C

a
Su

bp
ol

ic
ie

s
2

3
4

5
6

7
8

9
10

To
ta

l

Ye
s

Ye
s

1
.9
±
1
.4

1
.6
±
0
.5

4
.6
±
2
.1

1
.4
±
1
.1

3
.4
±
3
.3

1
.3
±
1
.2

1
.0
±
1
.1

1
.8
±
0
.6

5
.5
±
7
.9

2
2
.6
±
1
6
.1

N
o

Ye
s

2
.9
±
1
.9

2
.9
±
1
.4

4
.8
±
1
.7

1
.8
±
1
.3

2
.4
±
1
.6

2
.0
±
2
.3

2
.9
±
2
.4

2
.9
±
0
.7

1
.8
±
1
.3

2
4
.3
±
5
.4

N
o

N
o

1
4
.5
±
1
.9

1
9
.2
±
1
.4

1
2
.5
±
1
.0

1
2
.6
±
1
.5

1
0
.6
±
1
.1

1
6
.4
±
1
.5

1
5
.8
±
1
.5

2
0
.2
±
5
.8

1
1
.2
±
2
.1

1
3
3
.1
±
7
.1

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 33 of 38 28

transfer to a variety of related tasks, reducing the overall lifelong learning sample com-
plexity required to learn complex behaviors. Our experiments showed that such structured
decomposition avoids negative transfer and catastrophic interference, two major concerns
for lifelong learning systems. The experiments also demonstrated that MPHRL substan-
tially improves lifelong learning sample efficiency with both learned and hand-crafted
model primitives.

Our approach does not require access to accurate or hand-crafted model primitives. Nei-
ther does it need a well-designed task distribution (as in the case of meta-learning) or the
incremental introduction of individual tasks. So long as the set of model primitives are suf-
ficiently distinctive across the task distribution, MPHRL is robust to other imperfections.

6 Future work

6.1 Automatic task decomposition via online model primitive discovery

Learning useful and diverse model primitives, subpolicies and gating controller (i.e. task
decomposition) all simultaneously is an important area for future work. Below we outline
one idea that could make model-primitive-based automatic task decomposition possible.

Automatic discovery of model primitives, that is, without hand-crafted environment
setup, means that no additional environments should be built solely for the purpose of
learning model primitives. In other words, the only environment that model primitive
learning can take place will be the source task environment itself. Under this scenario,
model primitives, the gating controller and the subpolicies must be learned together simul-
taneously. From this perspective, the problem of automatic discovery of model primitives
is the same as the problem of automatic task decomposition, or the challenge of simultane-
ously learning all three components of MPHRL.

Since the main requirement for a good set of model primitives is diversity, one can
imagine the possibility of learning all three components of MPHRL at once online. At the
beginning of training, it is unclear how many model primitives are needed, so the maxi-
mum number of model primitives allowed, Kmax , will be defined, e.g. Kmax = 10 . On the
other hand, it is initially unclear what the optimal number of model primitives (or sub-
policies), K, will be. Therefore at the beginning of training, we assume that K = 1 , and we
increment K later during exploration when the agent realizes that more model primitives
are needed. The key insight here is that in order to learn diverse model primitives, the data
used to train these model primitives have to be diverse. Therefore, there needs to be an
uncertainty threshold, � , below which a sample (st, at, rt, st+1) will be allowed to be used to
train a particular model primitive. In other words, each of the model primitives will only be
trained on samples that the primitive itself finds not too surprising. A concrete instance of �
for Gaussian model primitives can be the maximum mean square error between the ground
truth next state and the predicted next state, below which the sample will be allowed to
train the kth model primitive T̂k:

Table 11 10-Maze: effect of
coupling between cross entropy
and action distribution

Task Timesteps to reach 80% average success rate (×106)

1 2 3 4 5

Timesteps (×106) 15.5 ± 1.2 3.4 ± 1.1 19.3 ± 8.0 28.9 ± 2.5 N/A

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 34 of 38

In the case where there are samples that no existing model primitive is familiar with (under
the uncertainty threshold), a new model primitive will need to be trained to cover this new
portion of the world states. In this case, we increment K and a new model primitive is
added to the existing set. This process can repeat until MPHRL solves the entire source
task, concurrently learning a set of model primitives, the same number of subpolicies and a
gating controller. This idea can be summarized in Algorithm 3.

Using this algorithm to learn model primitives simultaneously does not necessarily
result in learning suboptimal model primitives. In the 10-Maze environments, for example,
this algorithm will not necessarily learn only 2 model primitives specializing in horizontal
and vertical corridors, as opposed to learning 4 model primitives specializing in each of the
N, E, S, W corridors. This is because given a good � hyperparameter, the existing model
primitives will remain stable and untrained (e.g. E and N directions in the horizontal and
vertical corridors respectively), while new model primitives are being added and trained
(e.g. W and S directions in the horizontal and vertical corridors respectively). When enter-
ing the first W or S corridor, the E and N model primitives will find the W and S corri-
dors unfamiliar in terms of next state transitions. When this unfamiliarity exceeds � , these
unfamiliar transitions will not be allowed to train the E and N model primitives. In this
case, Algorithm 3 will create new model primitives (i.e. the W and S model primitives) to
handle the new W and S corridors. On the other hand, the sequential nature of Algorithm 3
ensures that E and N model primitives will be specialized enough such that transitions in
the W and S corridors will appear unfamiliar to them.

(25)�{(st, at, rt, st+1) is allowed to train T̂k} = �

{‖‖‖st+1 − T̂𝜒k
(st, at)

‖‖‖
2 ≤ 𝛽

}

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 35 of 38 28

6.2 Automatic task decomposition via neural processes and information
bottlenecks

Given its ability to represent a distribution over stochastic processes, the recently intro-
duced Neural Processes [22] can potentially be an efficient approach to build upon for
model primitive learning. This approach can allow moving beyond simple discrete sets of
model primitives to instead capturing the different uncertainties in a single model. It will
also allow more complex gating controller than allowed by a simple categorical distribu-
tion. Moreover, change in uncertainties from low to high can lead to a better signal for
learning a new model primitive.

Another interesting direction to take would be to achieve hierarchy through information-
bottleneck [25, 30]. Modules specializing for different domains via different information
bottlenecks could help fully automate the learning of task decomposition. An early attempt
has been made in Goyal et al. [26] to set up an intrinsic competition mechanism to select
the active subpolicy for a given input. Each subpolicy primitive has an information bot-
tleneck on how much information it can use for a given input state. However, even for
relatively simpler continuous control tasks, the policies required pre-training. Moreover,
their objective is to achieve implicitly decentralized control. Still, similar ideas can also be
applied in the context of model primitive learning. The K model primitives can be com-
posed of an encoder penc(Zk ∣ st, at) and a decoder pdec(st+1 ∣ Zk) . Here the output of the
encoder, Z, captures the useful information in the current state and action and the decoder
takes this encoded information to produce a distribution over next states. Together they can
function as model primitives:

with information bottleneck enforced by penalizing KL divergence of Z and a prior. This
however does not necessarily lead to specialization of individual primitives in different
parts of the state space and would require a similar competitive pressure as in Goyal et al.
[26] to get weights over activation of individual primitives based on the primitive encoder’s
information content. Given models generalize a lot better than individual policies across
different tasks, our hypothesis is that this would be more effective than the direct decompo-
sition of policies. We aim to pursue this empirical enquiry in future work.

Acknowledgements We are thankful to the anonymous reviewers and everyone at the Stanford Intelligent
Systems Laboratory for useful comments and suggestions. This work is supported in part by DARPA under
Agreement Number D17AP00032. The content is solely the responsibility of the authors and does not nec-
essarily represent the official views of DARPA. We are also grateful for the support from Google Cloud in
scaling our experiments.

References

 1. Abel, D., Hershkowitz, D. E., & Littman, M. L. (2016). Near optimal behavior via approximate state
abstraction. In International conference on machine learning (ICML) (pp. 2915–2923).

 2. Abel, D., Arumugam, D., Lehnert, L., & Littman, M. L. (2017). Toward good abstractions for lifelong
learning. In Proceedings of the NIPS workshop on hierarchical reinforcement learning.

(26)T̂(st+1 ∣ st, at,Mk) = ∫z

penc(zk ∣ st, at)pdec(st+1 ∣ zk)dzk

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 36 of 38

 3. Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., & Abbeel. P, (2018). Continuous
adaptation via meta-learning in nonstationary and competitive environments. In International confer-
ence on learning representations (ICLR).

 4. Anand, A., Grover, A., Singla, P., et al. (2015). ASAP-UCT: Abstraction of state-action pairs in UCT.
In International joint conference on artificial intelligence (IJCAI).

 5. Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents.
In AAAI conference on artificial intelligence (AAAI) (pp. 119–125).

 6. Bacon, P., Harb, J., & Precup, D. (2017). The option-critic architecture. In AAAI conference on artifi-
cial intelligence (AAAI) (pp. 1726–1734).

 7. Baird, L. C. (1994). Reinforcement learning in continuous time: Advantage updating. IEEE Interna-
tional Conference on Neural Networks (ICNN), 4, 2448–2453.

 8. Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., & Silver, D. (2017).
Successor features for transfer in reinforcement learning. In Advances in neural information processing
systems (NeurIPS) (pp. 4055–4065).

 9. Bertsekas, D. P., & Castanon, D. A. (1989). Adaptive aggregation methods for infinite horizon
dynamic programming. IEEE Transactions on Automatic Control, 34(6), 589–598.

 10. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
OpenAI gym. CoRR. arXiv :1606.01540 .

 11. Brunskill, E., & Li, L. (2014). PAC-inspired option discovery in lifelong reinforcement learning. In
International conference on machine learning (ICML) (pp. 316–324).

 12. Cobo, L. C., Isbell Jr, C. L., & Thomaz, A. L. (2012). Automatic task decomposition and state abstrac-
tion from demonstration. In International conference on autonomous agents and multiagent systems
(AAMAS) (pp. 483–490). International Foundation for Autonomous Agents and Multiagent Systems.

 13. Daniel, C., Neumann, G., Kroemer, O., & Peters, J. (2016). Hierarchical relative entropy policy search.
Journal of Machine Learning Research, 17(1), 3190–3239.

 14. Dayan, P. (1993). Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4), 613–624.

 15. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierar-
chical image database. In IEEE computer society conference on computer vision and pattern recogni-
tion (CVPR) (pp. 248–255).

 16. Denis, N., & Fraser, M. (2019). Options in multi-task reinforcement learning: Transfer via reflection.
In Canadian conference on artificial intelligence (pp. 225–237). Springer.

 17. Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2018). Diversity is all you need: Learning skills
without a reward function. In International conference on learning representations (ICLR).

 18. Finn, C., Abbeel, P., & Levine, S. (2017a). Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning (ICML) (pp. 1126–1135).

 19. Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017b). One-shot visual imitation learning via
meta-learning. In Conference on robot learning (pp. 357–368).

 20. Florensa, C., Duan, Y., & Abbeel, P. (2016). Stochastic neural networks for hierarchical reinforcement
learning. In International conference on learning representations (ICLR).

 21. Frans, K., Ho, J., Chen, X., Abbeel, P., & Schulman, J. (2018). Meta learning shared hierarchies. In
International conference on learning representations (ICLR).

 22. Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Ali Eslami, S. M., & Teh, Y. W.
(2018). Neural processes. CoRR. arXiv :1807.01622 .

 23. Ge, L., Gao, J., Ngo, H., Li, K., & Zhang, A. (2014). On handling negative transfer and imbalanced
distributions in multiple source transfer learning. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 7(4), 254–271.

 24. Gershman, S. J. (2018). The successor representation: Its computational logic and neural substrates.
Journal of Neuroscience, 38(33), 7193–7200.

 25. Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Larochelle, H., Botvinick, M., Levine, S., & Bengio, Y.
(2019a). Transfer and exploration via the information bottleneck. In International conference on learn-
ing representations (ICLR).

 26. Goyal, A., Sodhani, S., Binas, J., Peng, X.B., Levine, S., & Bengio, Y. (2019b). Reinforcement learn-
ing with competitive ensembles of information-constrained primitives. CoRR. arXiv :1906.10667 .

 27. Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. (2018). Recasting gradient-based meta-learn-
ing as hierarchical Bayes. CoRR. arXiv :1801.08930 .

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1906.10667
http://arxiv.org/abs/1801.08930

Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

Page 37 of 38 28

 28. Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). Generalizing plans to new environments
in relational MDPs. In International joint conference on artificial intelligence (IJCAI) (pp. 1003–
1010). Morgan Kaufmann Publishers Inc.

 29. Ha, D., & Schmidhuber, J. (2018). World models. CoRR. arXiv :1803.10122 .
 30. Hafez-Kolahi, H., & Kasaei, S. (2019). Information bottleneck and its applications in deep learning.

Information Systems and Telecommunication, 3(4), 119.
 31. Harb, J., Bacon, P. L., Klissarov, M., & Precup, D. (2018). When waiting is not an option: Learning

options with a deliberation cost. In AAAI conference on artificial intelligence (AAAI).
 32. Holland, G. Z., Talvitie, E., & Bowling, M. (2018). The effect of planning shape on dyna-style plan-

ning in high-dimensional state spaces. CoRR. arXiv :1806.01825 .
 33. Isele, D., & Cosgun, A. (2018). Selective experience replay for lifelong learning. In AAAI conference

on artificial intelligence (AAAI).
 34. Isele, D., Rostami, M., & Eaton, E. (2016). Using task features for zero-shot knowledge transfer in

lifelong learning. In International joint conference on artificial intelligence (IJCAI) (pp. 1620–1626).
 35. Jain, A., Khetarpal, K., & Precup, D. (2018). Safe option-critic: Learning safety in the option-critic

architecture. CoRR. arXiv :1807.08060 .
 36. Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant state variables. Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 8, 752–757.
 37. Keller, G. B., Bonhoeffer, T., & Hübener, M. (2012). Sensorimotor mismatch signals in primary visual

cortex of the behaving mouse. Neuron, 74(5), 809–815. https ://doi.org/10.1016/j.neuro n.2012.03.040.
 38. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., et al. (2017).

Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sci-
ences, 114(13), 3521–3526.

 39. Kulkarni, T. D., Saeedi, A., Gautam, S., & Gershman, S. J. (2016). Deep successor reinforcement
learning. CoRR. arXiv :1606.02396 .

 40. Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., & Keller, G. B. (2017). A sensorimotor cir-
cuit in mouse cortex for visual flow predictions. Neuron, 95(6), 1420–1432. https ://doi.org/10.1016/j.
neuro n.2017.08.036.

 41. Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for MDPs.
In ISAIM.

 42. Liu, M., Machado, M. C., Tesauro, G., & Campbell, M. (2017). The eigenoption-critic framework.
CoRR. arXiv :1712.04065 .

 43. Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., & Campbell, M. (2017). Eigenoption
discovery through the deep successor representation. In International conference on learning represen-
tations (ICLR).

 44. Machado, M. C., Bellemare, M. G., & Bowling, M. (2018). Count-based exploration with the succes-
sor representation. CoRR. arXiv :1807.11622 .

 45. Masoudnia, S., & Ebrahimpour, R. (2014). Mixture of experts: A literature survey. Artificial Intelli-
gence Review, 42(2), 275–293.

 46. McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. In G. H. Bower (Ed.), Psychology of learning and motivation, Vol 24, pp
109–165. Cambridge: Academic Press.

 47. Mendelssohn, R. (1982). An iterative aggregation procedure for Markov decision processes. Opera-
tions Research, 30(1), 62–73.

 48. Neumann, G., Daniel, C., Paraschos, A., Kupcsik, A., & Peters, J. (2014). Learning modular poli-
cies for robotics. Frontiers of Computational Neuroscience, 8(62), 1–32.

 49. Nguyen-Tuong, D., & Peters, J. (2011). Model learning for robot control: A survey. Cognitive Pro-
cessing, 12(4), 319–340.

 50. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learn-
ing with neural networks: A review. Neural Networks, 113, 54–71. https ://doi.org/10.1016/j.neune
t.2019.01.012.

 51. Reyman, G., & van der Wal, J. (1988). Aggregation–disaggregation algorithms for discrete stochas-
tic systems. In DGOR/NSOR (pp. 515–522). Springer, Berlin.

 52. Rosenbaum, D., & Weiss, Y. (2015). The return of the gating network: Combining generative mod-
els and discriminative training in natural image priors. In Advances in neural information process-
ing systems (NeurIPS) (pp. 2683–2691).

 53. Rosenstein, M. T., Marx, Z., Kaelbling, L. P., & Dietterich, T. G. (2005). To transfer or not to trans-
fer. In NIPS 2005 workshop on transfer learning (Vol. 898, p. 3).

 54. Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pas-
canu, R., & Hadsell, R. (2016). Progressive neural networks. CoRR. arXiv :1606.04671 .

http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1806.01825
http://arxiv.org/abs/1807.08060
https://doi.org/10.1016/j.neuron.2012.03.040
http://arxiv.org/abs/1606.02396
https://doi.org/10.1016/j.neuron.2017.08.036
https://doi.org/10.1016/j.neuron.2017.08.036
http://arxiv.org/abs/1712.04065
http://arxiv.org/abs/1807.11622
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
http://arxiv.org/abs/1606.04671

 Autonomous Agents and Multi-Agent Systems (2020) 34:28

1 3

 28 Page 38 of 38

 55. Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous
control using generalized advantage estimation. CoRR. arXiv :1506.02438 .

 56. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimi-
zation algorithms. CoRR. arXiv :1707.06347 .

 57. Shamwell, E., Nothwang, W., & Perlis, D. (2018). An embodied multi-sensor fusion approach to
visual motion estimation using unsupervised deep networks. Sensors, 18(5), 1427.

 58. Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting unreasonable effectiveness
of data in deep learning era. In IEEE international conference on computer vision (ICCV) (pp.
843–852).

 59. Sung, F., Zhang, L., Xiang, T., Hospedales, T., & Yang, Y. (2017). Learning to learn: Meta-critic
networks for sample efficient learning. CoRR. arXiv :1706.09529 .

 60. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge: MIT
Press.

 61. Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1–2), 181–211.

 62. Talvitie, E. (2017). Self-correcting models for model-based reinforcement learning. In AAAI con-
ference on artificial intelligence (AAAI).

 63. Tanaka, F., & Yamamura, M. (2003). Multitask reinforcement learning on the distribution of
MDPs. IEEE International Symposium on Computational Intelligence in Robotics and Automation,
3, 1108–1113.

 64. Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., Lillicrap, T. P., & Riedmiller, M. A. (2018). Deepmind control suite. CoRR.
arXiv :1801.00690 .

 65. Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., & Pascanu,
R. (2017). Distral: Robust multitask reinforcement learning. In Advances in neural information
processing systems (NeurIPS) (pp. 4496–4506).

 66. Tessler, C., Givony, S., Zahavy, T., Mankowitz, DJ., & Mannor, S. (2017). A deep hierarchical
approach to lifelong learning in minecraft. In AAAI conference on artificial intelligence (AAAI).

 67. Thrun, S. (1995). A lifelong learning perspective for mobile robot control. In Intelligent robots and
systems (pp. 201–214). Elsevier.

 68. Thrun, S., & Pratt, L. (1998). Learning to learn: Introduction and overview. In S. Thrun & L. Pratt
(Eds.), Learning to learn (pp. 3–17). Boston: Springer.

 69. Tiwari, S., & Thomas, P. S. (2018). Natural option critic. CoRR. arXiv :1812.01488 .
 70. Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In

IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5026–5033). https
://doi.org/10.1109/IROS.2012.63861 09.

 71. Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., & Kavukcuoglu,
K. (2017). FeUdal networks for hierarchical reinforcement learning. In International conference on
machine learning (ICML) (pp. 3540–3549).

 72. Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (2007). Multi-task reinforcement learning: A hierarchical
Bayesian approach. In International conference on machine learning (ICML) (pp. 1015–1022).

 73. Yang, Y., Caluwaerts, K., Iscen, A., Tan, J., & Finn, C. (2019). NoRML: No-reward meta learning.
In International conference on autonomous agents and multiagent systems (AAMAS) (pp. 323–331).
International Foundation for Autonomous Agents and Multiagent Systems.

 74. Zhang, J., Springenberg, J. T., Boedecker, J., & Burgard, W. (2017). Deep reinforcement learning with
successor features for navigation across similar environments. In IEEE/RSJ international conference
on intelligent robots and systems (IROS) (pp. 2371–2378).

 75. Zhang, S., & Whiteson, S. (2019). DAC: The double actor-critic architecture for learning options.
CoRR. arXiv :1904.12691 .

 76. Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R., & Farhadi, A. (2017).
Visual semantic planning using deep successor representations. In Proceedings of the IEEE interna-
tional conference on computer vision (pp. 483–492).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1706.09529
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1812.01488
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/1904.12691

	Model primitives for hierarchical lifelong reinforcement learning
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Lifelong reinforcement learning
	2.2 Decomposed representation

	3 Model primitive hierarchical reinforcement learning
	3.1 Model primitives and gating
	3.1.1 Subpolicies
	3.1.2 Gating controller
	3.1.3 Subpolicy composition
	3.1.4 Decoupling cross entropy from action distribution

	3.2 Learning

	4 Experiments
	4.1 Single-task learning
	4.1.1 Observation space
	4.1.2 Full details of reward structure
	4.1.3 Model primitives
	4.1.4 Results and analysis

	4.2 Lifelong learning
	4.2.1 10-Maze
	4.2.2 8-Pickup&Place

	4.3 Ablation
	4.3.1 Model noise
	4.3.2 Overlapping model primitives
	4.3.3 Model diversity
	4.3.4 Negative transfer and catastrophic forgetting
	4.3.5 Oracle gating controller
	4.3.6 Partial decomposition
	4.3.7 Learned model primitives
	4.3.8 Gating controller transfer
	4.3.9 Subpolicy transfer
	4.3.10 Coupling between cross entropy and action distribution

	5 Conclusions
	6 Future work
	6.1 Automatic task decomposition via online model primitive discovery
	6.2 Automatic task decomposition via neural processes and information bottlenecks

	Acknowledgements
	References

