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Abstract. This work considers the problem of learning cooperative poli-
cies in complex, partially observable domains without explicit communi-
cation. We extend three classes of single-agent deep reinforcement learn-
ing algorithms based on policy gradient, temporal-difference error, and
actor-critic methods to cooperative multi-agent systems. To effectively
scale these algorithms beyond a trivial number of agents, we combine
them with a multi-agent variant of curriculum learning. The algorithms
are benchmarked on a suite of cooperative control tasks, including tasks
with discrete and continuous actions, as well as tasks with dozens of
cooperating agents. We report the performance of the algorithms using
different neural architectures, training procedures, and reward struc-
tures. We show that policy gradient methods tend to outperform both
temporal-difference and actor-critic methods and that curriculum learn-
ing is vital to scaling reinforcement learning algorithms in complex multi-
agent domains.

1 Introduction

Cooperation between several interacting agents has been well studied [1–3].
While the problem of cooperation can be formulated as a decentralized par-
tially observable Markov decision process (Dec-POMDP), exact solutions are
intractable [4,5]. A number of approximation methods for solving Dec-POMDPs
have been developed recently that adapt techniques ranging from reinforcement
learning [6] to stochastic search [7]. However, applying these methods to real-
world problems is challenging because they are typically limited to discrete action
spaces and require carefully designed features.

On the other hand, recent work in single agent reinforcement learning has
enabled learning in domains that were previously thought to be too challenging
due to their large and complex observation spaces. This line of work combines
ideas from deep learning with earlier work on function approximation [8,9], giv-
ing rise to the field of deep reinforcement learning. Deep reinforcement learning
has been successfully applied to complex real-world tasks that range from play-
ing Atari games [10] to robotic locomotion [11]. The recent success of the field
leads to a natural question—how well can ideas from deep reinforcement learning
be applied to cooperative multi-agent systems?
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In this work, we focus on problems that can be modeled as Dec-POMDPs.
We extend three classes of deep reinforcement learning algorithms: temporal-
difference learning using Deep Q Networks (DQN) [10], policy gradient using
Trust Region Policy Optimization (TRPO) [12], and actor-critic using Deep
Deterministic Policy Gradients (DDPG) [13] and A3C [14]. We consider three
training schemes for multi-agent systems based on centralized training and exe-
cution, concurrent training with decentralized execution, and parameter sharing
during training with decentralized execution. We incorporate curriculum learn-
ing [15] into cooperative domains by first learning policies that require a small
number of cooperating agents and then gradually increasing the number of agents
that need to cooperate. The algorithms and training schemes are benchmarked
on four multi-agent tasks requiring cooperative behavior. The benchmark tasks
were chosen to represent a diverse variety of complex environments with discrete
and continuous actions and observations.

Our empirical evaluations show that multi-agent policies trained with para-
meter sharing and an appropriate choice of reward function exhibit coopera-
tive behavior without explicit communication between agents. We show that
the multi-agent extension of TRPO outperforms all other algorithms on bench-
mark problems with continuous action spaces, while A3C has the best perfor-
mance on the discrete action space benchmark. By combing curriculum learning
and TRPO, we demonstrate scalability of deep reinforcement learning in large,
continuous action domains with dozens of cooperating agents and hundreds of
agents present in the environment. To our knowledge, this work presents the first
cooperative reinforcement learning algorithm that can successfully scale in large
continuous action spaces. The benchmark problems and the implementations of
multi-agent algorithms can be found at https://github.com/sisl/MADRL.

2 Related Work

Multi-agent reinforcement learning has a rich literature [2,16]. A number of algo-
rithms involve value function based cooperative learning. Tan compared the per-
formance of cooperative agents to independent agents in reinforcement learning
settings [1]. Ono and Fukumoto identified modularity as a useful prior to sim-
plify the application of reinforcement learning methods to multiple agents [17].
Guestrin et al. later extended this idea and factored the joint value function into
a linear combination of local value functions and used message passing to find
the joint optimal actions [18]. Lauer and Riedmiller tried distributing the value
function into learning multiple tables but failed to scale to stochastic environ-
ments [19].

Policy search methods have found better success in partially observable envi-
ronments [20]. Peshkin et al. studied gradient based distributed policy search
methods [21]. Our solution approach can be considered a direct descendant of
the techniques introduced in their work. However, instead of using finite state
machines, our model uses deep neural networks to control the agents. This app-
roach allows us to extend neural network controllers to tasks with continuous

https://github.com/sisl/MADRL
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actions, use deep reinforcement learning optimization techniques, and consider
more complex observation spaces.

Relatively little work on multi-agent reinforcement learning has focused on
continuous action domains. A few notable approaches include those of Fernández
and Parker who focus on discretization and Tamakoshi and Ishii who used a
normalized Gaussian Network as a function approximator to learn continuous
action policies [22,23]. Many of these approaches only work in fairly restricted
settings and fail to scale to high-dimensional raw observations or continuous
actions. Moreover, their computational complexity grows exponentially with the
number of agents.

Multi-agent control has also been studied in extensive detail from the dynam-
ical systems perspective in problems like formation control [24], coverage con-
trol [25], and consensus [26]. The limitations of the dynamical systems approach
lie in its requirement for hand-engineered control laws and problem specific fea-
tures. While the approach allows for development of provable characteristics
about the controller, it requires extensive domain knowledge and hand engineer-
ing. Overall, deep reinforcement learning provides a more general way to solve
multi-agent problems without the need for hand-crafted features and heuristics
by allowing the neural network to learn those properties of the controller directly
from raw observations and reward signals.

Recent research has applied deep reinforcement learning to multi-agent prob-
lems. Tampuu et al. extended the DQN framework to independently train mul-
tiple agents [27]. Specifically, they demonstrate how collaborative and compet-
itive behavior can arise with the appropriate choice of reward structure in a
two-player Pong game. More recently, Foerster et al. and Sukhbaatar et al. train
multiple agents to learn a communication protocol to solve tasks with shared
utility [28,29]. They demonstrate end-to-end differentiable training using novel
neural architectures. However, these examples work with either relatively few
agents or simple observations and do not share our focus on decentralized con-
trol problems with high-dimensional observations and continuous action spaces.

3 Background

In this work, we consider multi-agent domains that are fully cooperative and par-
tially observable. All agents are attempting to maximize the discounted sum of
joint rewards. No single agent can observe the state of the environment. Instead,
each agent receives a private observation that is correlated with that state. We
assume the agents cannot explicitly communicate and must learn cooperative
behavior only from their observations.

Formally, the problems considered in this work can be modeled as Dec-
POMDPs defined by the tuple (I,S, {Ai}, {Zi} , T,R,O), where I is a finite
set of agents, S is a set of states, {Ai} is a set of actions for each agent i, {Zi}
is a set of observations for each agent i, and T , R, O are the joint transition,
reward, and observation models, respectively. In this work, we consider problems
where S, A, and Z can be infinite to account for continuous domains. In the
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reinforcement learning setting, we do not know T , R, or O, but instead have
access to a generative model. It is natural to also consider a centralized model
known as a multi-agent POMDP (MPOMDP), with joint action and observa-
tion models. The centralized nature of MPOMDPs makes them less effective at
scaling to systems with many agents.

In the reminder of the section, we briefly describe four single-agent deep rein-
forcement learning algorithms, including temporal-difference, actor-critic, and
policy gradient approaches. We also discuss the roles of reward shaping and
curriculum learning in multi-agent settings.

3.1 Deep Q-Network

The DQN algorithm [10] is a temporal-difference method that uses a neural
network to approximate the state-action value function. DQN relies on an expe-
rience replay dataset Dt = {e1, . . . , et}, which stores the agent’s experiences
et = (st, at, rt, st+1) to reduce correlations between observations. The experi-
ence consists of the current state st, the action the agent took at, the reward it
received rt, and the state it transitioned to st+1. The learning update at each
iteration i uses a loss function based on the temporal-difference update:

Li(θi) = E(s,a,r,s′)∼D
[
(r + γmax

a′
Q(s′, a′; θ−

i ) − Q(s, a; θi))2
]

where θi and θ−
i are the parameters of the Q-networks and a target network

respectively at iteration i, and the experience samples (s, a, r, s′) are sampled
uniformly from D. In partially observable domains where only observations ot

are available at time t instead of the entire state st, the experience takes the
form et = (ot, at, rt, ot+1). One of the limitations of DQN is that it cannot easily
handle continuous action spaces.

3.2 Deep Deterministic Policy Gradient

DDPG combines the actor-critic and DQN approaches to learn policies in
domains with continuous actions. DDPG maintains a parameterized actor func-
tion μ(s | θμ), which deterministically maps states to actions while learning a
critic Q(s, a) that estimates the value of state-action pairs. The actor can be
updated with the following optimization step:

∇θμJ ≈ Est∼ρπ
[∇aQ(s, a | θQ)|s=st,a=μ(st)∇θμ

μ(s | θμ)|s=st
]

where ρπ are transitions generated from a stochastic behavior policy π, typically
represented with a Gaussian distribution centered at μ(s | θμ).

3.3 Asynchronous Advantage Actor Critic

Asynchronous Advantage Actor Critic (A3C) [14] consists of global shared net-
works for policy π(a | s, θp) and value V (s, θv) functions. Multiple copies running
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independently accumulate gradients in parallel to asynchronously update this
network. The policy gradients are given by:

∇θp
log π(at | st; θp)A(st, at; θv)

where the advantage function A(st, at; θv) is computed from difference between
returns from n-step rollout and value function output.

The value network loss function is to minimize squared error of value function
outputs from environment returns.

3.4 Trust Region Policy Optimization

TRPO [12] is a policy gradient method that allows precise control of the expected
policy improvement during the optimization step. At each iteration k, TRPO
aims to solve the following constrained optimization problem by optimizing the
stochastic policy πθ:

Maximize
θ

Es∼ρθk
,a∼πθk

[
πθ(a|s)
πθk

(a|s)Aθk
(s, a)

]

subject to Es∼ρθk
[DKL(πθk

(·|s)‖πθ(·|s))] ≤ ΔKL

where ρθ = ρπθ
are the discounted state-visitation frequencies induced by πθ.

Aθk
(s, a) is the advantage function, which can be estimated by the difference

between the empirical returns and the baseline. We use a linear value function
baseline in our experiments. DKL is the KL divergence between the two policy
distributions, and ΔKL is a step size parameter that controls the maximum
change in policy per optimization step. The expectations in the expression can
be evaluated using sample averages, and the policy can be represented by non-
linear function approximators such as neural networks. The stochastic policy πθ

can be represented by a categorical distribution when the actions of the agent
are discrete and by a Gaussian distribution when the actions are continuous.

3.5 Reward Structure

The concept of reward shaping [30] involves modifying rewards to accelerate
learning without changing the optimal policy. When modeling a multi-agent
system as a Dec-POMDP, rewards are shared jointly by all agents. In a cen-
tralized representation, the reward signal cannot be decomposed into separate
components, and is equivalent to the joint reward in a Dec-POMDP. However,
decentralized representations allow us an alternative local reward representation.
Local rewards can restrict the reward signal to only those agents that are involved
in the success or failure at a task. Bagnell and Ng have shown that such local
information can help reduce the number of samples required for learning [31].
As we will note later, this decomposition can drastically improve training time.
The performance of the policy is still evaluated using the global reward.
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3.6 Curriculum Learning

Curriculum learning leverages the idea of learning policies for simple tasks first,
and then building on that knowledge to solve more difficult tasks [15]. Formally,
a curriculum T is an ordered set of tasks organized by increasing difficulty. In
cooperative settings, the tasks in the curriculum become more difficult as the
number of cooperating agents required to complete the task increases.

4 Cooperative Reinforcement Learning

This section outlines three training schemes for multi-agent reinforcement learn-
ing in cooperative settings as well as their advantages and disadvantages.

4.1 Centralized

A centralized policy maps the joint observation of all agents to a joint action,
and is equivalent to a MPOMDP policy. A major drawback of this approach is
that it is centralized in both training and execution, and leads to an exponential
growth in the observation and actions spaces with the number of agents. We
address this intractability in part by factoring the action space of centralized
multi-agent systems.

We first assume that the joint action can be factored into individual compo-
nents for each agent. The factored centralized controller can then be represented
as a set of sub-policies that map the joint observation to an action for a single
agent. In the policy gradient approach this reduces to factoring the joint action
probability as P (a) =

∏
i P (ai) where ai are the individual actions of an agent.

In practice, this means that the policy of a given agent is represented by a subset
of the output nodes in the neural network. In systems with discrete actions, this
reduces the size of the action space from |A|n to n|A|, where n is the number
of agents and A is the action space for a single agent (we assume homogeneous
agents for simplicity). While this is a significant reduction in the size of the
action space, the exponential growth in the observation spaces ultimately makes
centralized controllers impractical for complex cooperative tasks.

4.2 Concurrent

In concurrent learning, each agent learns its own individual policy. Concurrent
policies map an agent’s private observation to an action for that agent. Each
agent’s policy is independent. In the policy gradient approach, this means opti-
mizing multiple policies simultaneously from the joint reward signal. One of the
advantages of this approach is that it makes learning of heterogeneous policies
easier. This can be beneficial in domains where agents may need to take on
specific roles in order to coordinate and receive reward.

The major drawback of concurrent training is that it does not scale well to
large numbers of agents. Because the agents do not share experience with one
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Algorithm 1. PS-TRPO
Input: Initial policy parameters Θ0, trust region size Δ
for i ← 0, 1, . . . do

Rollout trajectories for all agents τ ∼ πθi

Compute advantage values Aπθi
(om, m, am) for each agent m’s trajectory element.

Find πθi+1 maximizing Eq. (1)

subject to DKL(πθi‖πθi+1) ≤ Δ

another, this approach adds additional sample complexity to the reinforcement
learning task. Another drawback of the approach is that the agents are learning
and adjusting their policies individually making the environment dynamics non-
stationary, which can lead to instability.

4.3 Parameter Sharing

The policies of homogeneous agents may be trained more efficiently using para-
meter sharing. This approach allows the policy to be trained with the expe-
riences of all agents simultaneously. However, it still allows different behavior
between agents because each agent receives unique observations, which includes
their respective index. In parameter sharing, the control is decentralized but the
learning is not. In the remainder of the paper, all training schemes use parameter
sharing unless stated otherwise.

So long as the agents can execute decentralized policies with shared parame-
ters, single agent algorithms like DDPG, DQN, TRPO and A3C can be extended
to multi-agent systems. As an example, Algorithm 1 describes a policy gradient
approach that combines parameter sharing and TRPO. We refer to it as PS-
TRPO. We first initialize the policy network and set the step size parameter.
At each iteration of the algorithm, the policy with shared parameters is used by
each agent to generate trajectories. The batch of trajectories from all the agents
is used to compute the advantage value and maximize the following objective:

L(θ) = Eo∼ρθk
,a∼πθk

[
πθ(a | o,m)
πθk

(a | o,m)
Aθk

(o,m, a)
]

(1)

where m is the agent index. The results of the optimization are used to compute
the parameter update for the policy.

5 Tasks

The four multi-agent benchmark tasks are described in this section. All tasks
are partially observable. For more details we refer the reader to the source code.
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Fig. 1. Examples of the four cooperative domains. (Color figure online)

5.1 Discrete

Pursuit. Pursuit is a standard task for benchmarking multi-agent algo-
rithms [32]. The pursuit-evasion domain consists of two sets of agents: evaders
and pursuers. The evaders are trying to avoid pursuers, while the pursuers are
trying to catch the evaders. The action and observation spaces in this problem
are discrete. Each pursuer receives a range-limited observation of its surround-
ings, and must choose between five actions Stay, Go East, Go West, Go South,
Go North. The observations contain information about the agent’s surroundings,
including the location of nearby pursuers, evaders, and obstacles. The example
in Fig. 1a shows a 32×32 grid world with randomly generated obstacles, 20 pur-
suers (denoted by red stars), and 20 evaders (denoted by blue stars). The square
box surrounding the pursuers indicates their observation range. The pursuers
receive a reward of 5.0 when they surround and catch an evader, and a reward
of 0.01 when they occupy the same space as an evader.

5.2 Continuous

Waterworld. Waterworld can be seen as an extension of the above mentioned
pursuit problem to a continuous domain. The extension is based on the single
agent waterworld domain used by [33]. In this task, agents need to cooperate to
capture moving food targets while avoiding poison targets. Both the observation
and action spaces are continuous, and the agents move around by applying a
two-dimensional force. The agents receive a reward of 10.0 for capturing a food
target, a reward of −1.0 for capturing a poison target, and an exertion penalty
of −0.01 · ‖ai‖2.

Multi-Walker. Multi-Walker is a more difficult continuous control locomo-
tion task based on the BipedalWalker environment from OpenAI gym [34]. The
domain consists of multiple bipedal walkers that can actuate the joints in each of
their legs. At the start of each simulation, a large package that stretches across
all walkers is placed on top of the walkers. The walkers must learn how to move
forward and to coordinate with other agents in order to keep the package bal-
anced while navigating a complex terrain. Each agent receives a reward of 1.0
for moving the package forward 1 meter, a reward of −100.0 for falling, and a
reward of −100.0 for dropping the package. An example environment with five
walkers is shown in Fig. 1c.
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Table 1. Summary of network architectures for each algorithm

TRPO DDPG/DQN A3C

Feature Net 100-50-25 400-300 128

Recurrent GRU-32 NA LSTM-128

Activation tanh ReLU tanh

Fig. 2. Normalized average returns for multi-agent policies trained using TRPO. Miss-
ing entries indicate the training was unsuccessful. A random policy has zero normalized
average return. Error bars represent standard error. The Wilcoxon test suggests the
differences are significant (p < 0.05) except for the difference between centralized GRU
and shared parameter GRU for the waterworld domain.

Multi-Ant. The multi-ant domain is a 3D locomotion task based on the
quadrupedal robot used in [35]. The goal of the robot is to move forward as
quickly as possible. In this domain, each leg of the ant is treated as a separate
agent that is able to sense its own position and velocity as well as those of its
two neighbors. Each leg is controlled by applying torque to its two joints. An
example multi-ant with ten legs is shown in Fig. 1d.

6 Experiments

This section presents empirical results that compare the performance of multi-
agent extensions of TRPO, DDPG, A3C, and DQN. In continuous action
domains we compare TRPO, A3C, and DDPG, while in discrete action domains
we compare TRPO, A3C, and DQN. We examine both feed-forward and recur-
rent policies in this work. We also examine the effects of centralized, concurrent,
and shared parameters training schemes as well as two reward mechanisms that
are relevant to multi-agent domains. The results are compared against each other
and against a heuristic hand-crafted baseline for each task. Lastly, we demon-
strate the benefits of curriculum learning to scalability in cooperative domains.

The neural network architectures used in this work are summarized
in Table 1. The feature net represents the number of neurons in each layer and is
used as the feedforward multi-layer perceptron (MLP) policy in each algorithm.
The type of the hidden cell, either GRU or LSTM, and their number is indicated
for recurrent policies. The feature net serves as the observation embedding for
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Fig. 3. Training curves comparing PS-TRPO and PS-DQN in Pursuit and PS-DDPG
in Multi-Walker Domains.

recurrent policies. DQN/DDPG do not use recurrent policies, and A3C uses a
single hidden layer as a feature network.

In all experiments, we use the discount factor γ = 0.99. For PS-TRPO, we set
the step size to Δ = 0.01, and constrain the size of each batch to a maximum of
24000 time-steps. For DDPG and DQN, we used batch sizes of 32, learning rate
of 1×10−3 for the state-action value function and 1×10−4 for the policy network.
For A3C, we used RMSProp [36] with an annealed learning rate starting from
5 × 10−5 with decay of 0.99.

6.1 Discrete Control Task

We first compared performances of the three training schemes on the pur-
suit problem using TRPO. The emergent behavior observed in TRPO policies
included pursuers breaking up into teams to maximize the number of evaders
that were captured. The results are summarized in Fig. 2a for a 16 × 16 grid,
8 pursuers with an observation range of 7, and 30 evaders. The figure shows
that parameter sharing tends to outperform both the concurrent and centralized
training schemes. Because the observation is image-like with spatial correlations
present in each observation dimension, we also used a convolutional neural net-
works (CNN) to represent the policy in this task. The results show that with
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Table 2. Average returns for parameter sharing multi-agent policies with global and
local rewards

Global Local

Pursuit 8.1 12.1

Waterworld −1.4 14.3

Multi-Walker −23.3 29.9

Multi-Ant 475.2 488.1

parameter sharing, CNN policies outperform MLP policies, while GRU policies
have the best overall performance.

We then compared the training behavior of global and local rewards. We
found that using local rewards consistently improved convergence during train-
ing. An example of this difference for the pursuit evasion problem is shown
in Table 2.

We compared the performance of PS-DQN against PS-TRPO and PS-A3C.
As can be seen from Fig. 3 and Table 4, PS-A3C outperforms both PT-TRPO
and PS-DQN, with PS-DQN having the worst performance. We hypothesize
that PS-DQN is unable to learn a good controller due to the changing policies of
other agents in the environment. This makes the dynamics of the problem non-
stationary which causes experience replay to inaccurately describe the current
state of the environment.

We also tested the ability of PS-TRPO to scale with very large observation
spaces. The pursuit domain was set up on a 128 × 128 grid with 200 pursuers
and 200 evaders with at least 16 pursuers required to capture an evader. While
hundreds of agents are present in the environment, only 16 of them need to
cooperate to achieve the capture task. Each observation is a four channel 21×21
image, making the observation space 1764 dimensional. The training curves for
this task are shown in Fig. 4, and show that the MLP policy fails to learn a
policy that can outperform the heuristic. However, by leveraging CNNs, we are
able to outperform the heuristic in this complex domain.

Comparison to Traditional Method. Traditional reinforcement learning and
Dec-POMDP approaches have difficulty solving problems with continuous action
spaces and scale to problems with large numbers of agents. We also confirmed
that PS-TRPO performs as well as a traditional approach for solving PS-TRPO
on a small 5 × 5 grid pursuit problem. The approach we use as comparison
resembles Joint Equilibrium search for policies (JESP) [37] in that it finds a
policy that maximizes the joint expected reward for one agent at a time, while
keeping the policies of all the other agents fixed. The process is repeated until an
equilibrium is reached. In our approach, we use the fast informed bound (FIB)
algorithm [38] to perform the policy optimization of a single agent.

The pursuit problem is set on a 5 × 5 grid with a square obstruction in the
middle. There is a single evader and two pursuers. Both of the pursuers must
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Fig. 4. Performance as a function of the number of iteration for different neural archi-
tectures in the pursuit domain with 200 agents. At least 16 agents need to occupy the
same cell to capture an evader.

Table 3. Average returns on small-scale pursuit problem

PS-TRPO FIB

Average Returns 9.36 ± 0.52 9.29 ± 0.65

occupy the same location as the evader in order to catch it and obtain a reward.
This problem has a total of 15625 states and 729 observations. The results com-
paring the average performance and their standard errors of PS-TRPO and FIB
policies averaged over 100 simulations are shown in Table 3. The results demon-
strate that PS-TRPO performs as well as the traditional approaches on the small
problem, and has the ability to scale to large and continuous spaces.

6.2 Continuous Control Tasks

We next compared the performance of our algorithms on continuous control
tasks. We compared the proposed training schemes with TRPO and found that
parameter sharing and concurrent approaches tend to outperform centralized
training for continuous tasks (Figs. 2b, c and d). GRU policies outperform MLP
policies in the multi-walker and multi-ant domains. However, MLP policies per-
form significantly better in the waterworld domain. We believe this is caused
by the difficulty of training recurrent networks compared to simpler feedforward
ones with high-dimensional observations, especially when the task is relatively
simple and does not require a history of observations. Visualizing the best per-
forming policies showed consistent intelligent behavior in coordination between
agents. In the waterworld domain, the pursuers learn to herd the evaders. In the
multi-walker domain, the walkers learn to push the box forward without letting
it fall down. In the multi-ant domain, the legs learn to avoid collision with each
other.
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Table 4. Average returns (over 50 runs) for policies trained with parameter sharing.
DQN for discrete environment, DDPG for continuous

Task PS-DQN/DDPG PS-A3C PS-TRPO

Pursuit 10.1 ± 6.3 25.5 ± 5.4 17.4 ± 4.9

Waterworld NA 10.1 ± 5.7 49.1 ± 5.7

Multiwalker −8.3 ± 3.2 12.4 ± 6.1 58.0 ± 4.2

Multi-ant 307.2 ± 13.8 483.4 ± 3.4 488.1 ± 1.3

Fig. 5. Image like representation of an observation in the pursuit evasion domain. The
locations of each entity (pursuers, evaders, and obstacles) are represented as bitmaps
in their respective channels.

We also compared local and global reward schemes in the continuous domain
(see Table 2). Overall, local reward shaping leads to better performance, and
is critical to learning intelligent behavior in the waterworld and multi-walker
domains (Table 2).

Finally, we compared the performance of PS-TRPO, PS-A3C, and PS-DDPG
in continuous multi-agent domains. Training curves comparing PS-DDPG and
PS-TRPO are shown in Fig. 3 for the multi-walker task, while the performance
of all the algorithms and tasks are compared in Table 4. The results show the
PS-TRPO significantly outperforms both PS-A3C and PS-DDPG in the water-
world and multi-walker domains. The performance of PS-TRPO and PS-A3C is
comparable in the multi-ant domain.

6.3 Scaling

We next studied how well the parameter sharing method scales to larger obser-
vation spaces and many agents.

Curriculum training: Figure 6 shows the degrading performance of all policies
with increasing number of agents in the multi-walker domain, and the perfor-
mance improvements when curriculum learning is used. The policies were all
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trained with TRPO. The decrease in performance is in part due to the increas-
ing difficulty of the reinforcement learning task as the number of cooperating
agents grows. As the number of agents required to complete a task increases, it
becomes more difficult to reach the parts of the state space with positive rewards
using naive exploration policies.

We investigated how a curriculum learning scheme can help scale the multi-
walker problem in the number of agents. An intuitive curriculum for this problem
is over the number of agents, and so we define a curriculum with the number of
agents in the environment ranging from 2 to 10. Because the policies are decen-
tralized even though the parameters are shared, they can be evaluated on tasks
with any number of cooperating agents regardless of the number of cooperating
agents present during training. Unfortunately, we found that these decentralized
shared parameter policies trained on a few agents often fail to generalize to larger
numbers of agents. We therefore define a Dirichlet distribution for this range of
tasks with higher probability assigned to the simplest task (with 2 agents for
Multi-Walker domain). We then sample an environment from this distribution
over the tasks in the curriculum and optimize the policy with PS-TRPO for a
few iterations. Once the expected reward for the most likely environment reaches
a threshold, we change the distribution such that the next environment is most
likely. We continue this curriculum until the expected reward in all environments
reaches the defined threshold. Algorithm 2 describes this process. As shown ear-
lier, the resulting policy outperforms policies trained without the curriculum.
We believe this improvement in performance is due to two reasons: 1. The dis-
tribution over environments provides a regularization effect, helping avoid local
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Algorithm 2. Curriculum Training
Input: Curriculum T , Iteration n, Policy πΘ, rthreshold
αT ← [length(T ), 1, 1, . . .]
while rmin < rthreshold do

{Sample task from the task distribution.}
w ∼ Dirichlet(αT )
i ∼ Categorical(w)
{Apply optimization step for a few iterations.}
PS-TRPO (Ti, πθ, n)
{ecurr is the task with the highest weight αT .}
recurr ← Evaluate(πθ, ecurr)
if recurr > rthreshold then

Circular shift αT weights to the next task
{Find the minimum average reward across tasks.}
rmin ← minT ErT

minima during optimization, and 2. It partially addresses the exploration prob-
lem by smoothly increasing the difficulty of the policy to be learned.

One potential issue with this experiment is that the curriculum scheme
observed more episodes than the ones without curriculum. However, we tried
training several policies with a fixed number of agents without a curriculum for
an equivalent number of episodes. These policies converged before reaching the
performance seen with curriculum training.

7 Conclusion

Despite the advances in decentralized control and reinforcement learning over
recent years, learning cooperative policies in multi-agent systems remains a chal-
lenge. The difficulties lie in scalability to high-dimensional observation spaces
and to large numbers of agents, accommodating partial observability, and han-
dling continuous action spaces. In this work, we extended three deep reinforce-
ment learning algorithms to the cooperative multi-agent context, and applied
them to four high-dimensional, partially observable domains with many agents.

Our empirical evaluations show that PS-TRPO policies have substantially
better performance than PS-DDPG and PS-A3C in continuous action collabo-
rative multi-agent domains while PS-A3C is able to outperform PS-TRPO in the
discrete domain. We suspect that DQN and DDPG perform poorly in systems
with multiple learners due to the non-stationarity of the system dynamics caused
by the changing policies of the agents. The non-stationary nature of the sys-
tem makes experience replay samples obsolete and negatively impacts training.
As evidence, we found that by disabling experience replay and instead relying
on asynchronous training [14] we were able to improve on the performance of
DQN and DDPG. However, we believe more hyperparameter tuning might be
required to reduce the gap in overall performance in continuous domains with
respect to TRPO. Finally, we presented how cooperative domains can form a
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natural curriculum over the number of agents required to collaborate on a task
and discovered how this not only allows us to scale PS-TRPO to environments
with large number of cooperating agents, but owing to the regularization effect
offered, allows us to reach better local optima in general.

There are several areas for future work. To improve scalability of the pro-
posed approach for larger numbers of cooperating agents further future work is
needed. Two major challenges in multi-agent systems are accommodating reward
sparsity through intelligent domain exploration and incorporating high-level task
abstractions and hierarchy [39]. These are acute forms of similar challenges in
the single agent learning. Recently, curiosity based information gain maximiz-
ing exploration strategy was explored by [40] . Similar ideas could be adapted
to maximize information gain not only about the environment’s dynamics, but
the dynamics of an agent’s behavior as well. Correspondingly, hierarchical value
functions were integrated with deep reinforcement learning [41]. Incorporating
task hierarchies in a multi-agent system would allow us to tackle learning spe-
cialization and heterogeneous behavior.
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