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Fig. 1: An environment with three instances of watching activity.

Fig. 2: Generative process for modeling the user preference data.

I. GENERATIVE MODEL: LEARNING THE PARAMETERS

Given user preference data from PlanIt, we learn the model
parameters. Since our goal was to make the data collection
easier for users, the labels we get are either bad, neutral or
good for a particular segment of the video. The challenge is
that we do not know which activity a is being affected by a
given waypoint ti during feedback. A waypoint could even
be influencing multiple activities. For example, in Fig. 1 a
waypoint passing between the human and TV could affect
multiple watching activities.

We therefore define a latent random variable zia ∈ {0, 1}
for waypoint ti, such that p(zia|E) (or ηa) is the (prior)
probability of user data arising from activity a. Incorporating
this parameter gives the following cost function:

Ψ({t1, .., tk}|E) =

k∏
i=1

∑
a∈AE

p(zia|E) Ψa(ti|E)︸ ︷︷ ︸
Marginalizing latent variable zia

(1)

where AE is the set of activities in environment E.1

Figure 2 shows the generative process for preference data.
Training data: We obtain user preferences over n environ-
ments E1, .., En. For each environment E we consider m
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1We extract the information about the environment and activities by
querying OpenRAVE. In practice and in the robotic experiments, human
activity information can be obtained using the software package by Koppula
et al. [1].

trajectory segments TE,1, .., TE,m labeled as bad by users.
For each segment T we sample k waypoints {tT ,1, .., tT ,k}.
We use Θ ∈ R30 to denote the model parameters and solve
the following maximum likelihood problem:

Θ∗ = arg max
Θ

n∏
i=1

m∏
j=1

Ψ(TEi,j |Ei; Θ)

= arg max
Θ

n∏
i=1

m∏
j=1

k∏
l=1

∑
a∈AEi

p(zla|Ei; Θ) Ψa(tTEi,j
,l|Ei; Θ)

(2)
Eq. (2) does not have a closed form solution. We fol-
low Expectation-Maximization (EM) procedure to learn the
model parameters. In E-step, we calculate the posterior
activity assignment p(zla|tTEi,j

,l, Ei) for all the waypoints
and update the parameters in the M-step.
E-step: In this step keeping the model parameters fixed we
find the posterior probability of a waypoint t affecting an
activity a.

p(za|t, E; Θ) =
p(za|E; Θ)Ψa(t|E; Θ)∑

a∈AE
p(za|E; Θ)Ψa(t|E; Θ)

(3)

We calculate this posterior for every waypoint t in our data.
M-step: Using the posterior from E-step we update the
model parameters in this step. Our affordance representation
consists of three distributions, namely: Gaussian, von-Mises
and Beta. The parameters of Gaussian, and mean (µ) of
von-Mises are updated in a closed form. Following Sra [2]
we perform first order approximation to update the variance
(κ) of von-Mises. The parameters of beta distribution (α and
β) are approximated using first and second order moments
of the data.

Estimating von-Mises distribution parameters: von-
Mises is parameterized by a scalar mean µ and variance κ.
Mean for an activitiy a has closed form update expression:

µa =

∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)xtTEi,j
,l

‖
∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)xtTEi,j
,l
‖

(4)

However, updating κ is not straightforward. We follow the
first order approximation by Sra [2] and update κ as follows:

κa =
R̄(2− R̄2)

1− R̄2
(5)

where, R̄ =
‖
∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)xtTEi,j
,l
‖∑n

i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)

(6)



Estimating Beta distribution parameters: Beta distribution
is parameterized by two scalars α and β. We use method
of moments to estimate these parameters. For an activity a,
we first estimate first and second order moments i.e. sample
mean and variance:

ma =

∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)d̄tTEi,j
,l∑n

i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)
(7)

va =

∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)(d̄tTEi,j
,l
−ma)2∑n

i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)

(8)

We then estimate α and β using the first and second order
moments of data:

αa = ma

(
ma(1−ma)

va
− 1

)
(9)

βa = (1−ma)

(
ma(1−ma)

va
− 1

)
(10)

Estimating Gaussian distribution parameters: It is
parameterized by a scalar mean g and variance σ. For an
activity a we estimate parameters of Gaussian distribution
in closed form.

ga =

∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)dtTEi,j
,l∑n

i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)
(11)

σa =

∑n
i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)(dtTEi,j
,l
− ga)2∑n

i=1

∑m
j=1

∑k
l=1 p(z

l
a|tTEi,j

,l, Ei)

(12)

In above equations dtTEi,j
,l

is the distance of waypoint
tTEi,j

,l from object/human.

II. APPLICATION TO MANIPULATION SCENARIOS

Unlike the 2-D navigation problem, manipulative tasks
need to model the 3-D nature of the world and this problem
depends on the object in hand and the objects encountered
while following a trajectory. For example, bringing a knife
close to any soft and fragile object is undesired. We therefore
take an object centric view to ground each object pair interac-
tion to a spatial distribution signifying object’s functionality.
Hence the total cost definition at each waypoint is modified
as:

Ψ(T = {t1, ..., tn})|E =
∏
j

∏
i

∏
k

Ψaj ,ak(ti|E) (13)

Here aj and ak are attributes of the grabbed object and
objects in the vicinity of waypoint ti. These attributes are
labels conveying physical properties of the objects. For
example, a knife can have an attribute sharp, while a laptop
can have attributes electronic and fragile. These attributes
are defined similar to Jain et al. [3].

Fig. 3: Relative Angle of Knife w.r.t sitting humans

A. Extending the Generative Model
We now extend the PlanIt generative model to object-

object attribute pair interaction and learn the 3-D spatial
distributions. For each attribute pair, we define a different
cost function Ψaj ,ak . An environment can have multiple
instances of objects with same attributes and our overall cost
function would have a cumulative effect of different attribute
pairs formed, while moving through the waypoints.

1) Modified Affordance Representation:: The affordance
representation gets slightly modified according to the
grabbed object attributes. For example for a knife:

Ψaj ,ak(ti|E) =



Ψaj ,ak,distΨaj ,ak,heiΨaj ,ak,ang

if ak ∈ human
Ψaj ,ak,distΨaj ,ak,ang

if ak /∈ human
(14)

Distance Preference Ψaj ,ak,dist(.): Humans would not
prefer objects like knives to get very close to them or
any fragile object i.e. the preferences vary with distance.
This preference is captured in a 1-D Gaussian distribution
centered around the object or human in the environment,
parameterized by a mean and variance.

Angular Preference Ψaj ,ak,ang(.): Certain angular posi-
tions of the grabbed object w.r.t the human or object in
the environment would be considered uncomfortable. For
example, humans would not prefer knife pointed towards
them, even if it is a reasonably far distance. This preference
is captured by a von-Mises distribution as:

Ψaj ,ak,ang(.) =
1

2πIo(κ)
eκµ

Txti

In the above equation, µ and κ are parameters that will
be learned from the data, and xti is a two dimensional
unit vector representing the x and y projection of the angle
between the grabbed-object orientation w.r.t to the object
in the environment, where the coordinate system is defined
locally for the attribute pair interaction.

Height Preference Ψaj ,ak,hei(.): It would not be preferable
to move a sharp knife over delicate objects or humans. These
preferences are captured by a beta distribution defined as:

Ψaj ,ak,hei(.) =
h̄α−1
ti (1− h̄β−1

ti )

B(α, β)
; h̄ti ∈ [0, 1] (15)

In the above equation, h̄ti is defined as:



h̄ti =

{
hti

hobj
if hti < hobj

hmax−hti

hmax
if hti > hobj

(16)

We learn the values of parameters α and β.
2) Parameter Learning: We optimize the data likelihood:

Θ∗ = arg max
Θ

n∏
x=1

m∏
y=1

Ψ(TEx,y|Ex; Θ) (17)

=
arg max

Θ

n∏
x=1

m∏
y=1

o∏
l=1

|objtTEx,y,l
|∑

k=1

p(zaj ,ak |Ex; Θ)

Ψaj ,ak(tTEx,y,l|Ex; Θ)
(18)

We use the Expectation-Maximization (EM) approach to
learn the parameters. In the E-step, we calculate the poste-
rior attribute pair assignment p(zaj ,ak |tTEx,y,l, Ex) for every
waypoint and use this to update the parameters in the M-step.

E-step: Keeping the model parameters fixed we find the
posterior probability of an attribute pair aj , ak at waypoint
t:

p(zaj ,ak |t, E; Θ) =
p(zaj ,ak |E; Θ)Ψaj ,ak(t|E; Θ)∑|obj|
h=1 p(zaj ,ah)Ψaj ,ah(t|E; Θ)

(19)

M-step: Using the posterior from E-step we update the
model parameters. Our affordance representation consists of
three distributions: Gaussian, von-Mises and Beta. Gaussian
parameters – mean (g) and variance (σ) and von-Mises mean
(µ) can be updated in a closed form. We use Sra’s [2] first
order approximation to update von-Mises variance (κ). We
use a similar approximation to update the beta distribution
parameters (α and β) using the first and second order
moments of the data.

Estimating Gaussian parameters: For an attribute pair
aj , ak:

gaj ,ak =

∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)dtTEx,y,l∑n

x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

(20)

σaj ,ak =

∑n
x=1

∑m
y=1

∑o
l=1

p(zaj ,ak |tTEx,y,l, Ex)

(dtTEx,y,l
− gaj ,ak)2∑n

x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

(21)
Estimating Beta distribution parameters: For an at-

tribute pair aj , ak:

maj ,ak =

∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)h̄tTEx,y,l∑n

x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

(22)

vaj ,ak =

∑n
x=1

∑m
y=1

∑o
l=1

p(zaj ,ak |tTEx,y,l, Ex)

(h̄tTEx,y,l
− gaj ,ak)2∑n

x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

(23)

We now use these to estimate α and β:

αaj ,ak = maj ,ak

(
maj ,ak(1−maj ,ak)

vaj ,ak
− 1

)
(24)

βaj ,ak = (1−maj ,ak)

(
maj ,ak(1−maj ,ak)

vaj ,ak
− 1

)
(25)

Estimating von-Mises distribution parameters: For an
attribute pair aj , ak:

µaj ,ak =

∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)xTEx,y,l

||
∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)xTEx,y,l||

(26)
To update κ:

κaj ,ak =
R̄(2− R̄2)

1− R̄2
(27)

where, R̄ =
||
∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)xTEx,y,l||∑n

x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

Estimating hidden variable: For an attribute pair aj , ak:

p(zaj ,ak |E; Θ) =

∑n
x=1

∑m
y=1

∑o
l=1 p(zaj ,ak |tTEx,y,l, Ex)

N
(28)

where, N = m× n× o
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